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Abstract. We consider nearly-periodic Markov chains, which may have
excellent functional-estimation properties but poor distributional con-
vergence rate. We show how simple modifications of the chain (involving
using a random number of iterations) can greatly improve the distribu-
tional convergence of the chain. We prove various theoretical results
about convergence rates of the modified chains. We also consider a
number of examples.

1. Introduction.

Consider a Markov chain Monte Carlo (MCMC) sampling algorithm X0, X1, X2, . . .

on a state space X , with updating probabilities P (x, ·) and stationary distribution π(·).

Such schemes are often used to estimate π(h) ≡
∫
X h dπ for various functionals h : X → R,

by e.g.

π̂(h) =
1
n

n∑
i=1

h(Xi) . (1)

Specific examples of MCMC algorithms include the Gibbs sampler and the Metropolis-

Hastings algorithm; for background see e.g. Smith and Roberts (1993), Tierney (1994),

and Gilks, Richardson, and Spiegelhalter (1996).

There are two different notions of such a sampling algorithm being a “good” one:

1. Distributional convergence. The MCMC algorithm is “good” if the chain con-

verges quickly in distribution, i.e. i does not have to be too large to make L(Xi)
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be close to π(·). (This implies in turn that the mean of π̂(h) above is close to

π(h).)

2. Asymptotic variance. Alternatively, the algorithm is “good” if the variance of

π̂(h) above is relatively small as n → ∞, when started in stationarity (i.e., with

X0 ∼ π(·)).

These two goals have been described as “conflicting”, and it has even been proposed

to begin with a rapidly-converging chain and then later switch to a small-variance chain

(e.g. Besag and Green, 1993; Mira, 2001). Indeed, it is true that if the underlying Markov

chain is (say) periodic or nearly periodic, then the convergence of L(Xi) to π(·) could be

slow, even though π̂(h) is a good approximation to π(h). This is particularly relevant

for antithetic chains, which introduce negative correlations to reduce asymptotic variance,

but at the expense of possibly introducing near-periodic behaviour which may slow the

distributional convergence (see e.g. Green and Han, 1992; Craiu and Meng, 2001).

On the other hand, in the present paper we argue that the above two goals are

not as conflicting as they might appear. In particular, we show that given a reversible

sampler with good asymptotic variance properties, a very slight modification of the sampler

(the binomial modification) will also have good distributional convergence properties. We

then generalise this idea to consider sampled chains of the form Pµ =
∑

n µ{n}Pn for

probability distributions µ on the non-negative integers. We prove various results about

the spectra and quantitative convergence rates of such chains.

2. A very simple example.

To motivate what follows, consider the simplest example of a periodic chain. Specifi-

cally, let X = {1, 2}, with transition matrix P given by

P =
(

0 1
1 0

)
.

That is, this Markov chain always moves from 1 to 2 and from 2 to 1. The stationary

distribution π(·) of this chain is given by the uniform distribution on X .

This chain has excellent asymptotic variance properties. Indeed, if h : X → R, and if

X0 ∼ π(·), then we always have π̂(h) = π(h) exactly (so the variance is zero).
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On the other hand, the chain has very poor distributional convergence properties.

Indeed, for any x ∈ X and any n ∈ N, the distribution Pn(x, ·) is always concentrated on

just one point, so it never converges to π(·) (it is periodic).

Now, let P be the Markov chain which either does nothing (with probability 1/2), or

does the same as P (with probability 1/2). Then P = 1
2 (I + P ) where I is the identity

matrix. (Similar such “mixtures” are considered e.g. in Proposition 3 of Tierney, 1994.)

Hence, the matrix of P is given by

P =
(

1/2 1/2
1/2 1/2

)
.

We thus see that the chain P converges to π(·) immediately, and therefore has excellent

distributional convergence properties. Similarly, if we let P̂n equal either Pn or Pn+1 with

probability 1/2 each, then P̂n also converges immediately to π.

Furthermore, running P̂n is very similar to running Pn. Also, running P for 2n steps

is equivalent (in terms of the distribution of the final value obtained) to running P for

a random number of steps having distribution Binomial(2n, 1/2) (hence, we call P the

binomial modification of P ).

We thus see that minor modifications to the original, periodic (but good for estimation)

Markov chain results in new Markov chains which have excellent distributional convergence

properties. This theme is explored further herein.

In addition, Markov chain convergence rates can sometimes be proved by establishing

minorisation conditions such as

P (x,A) ≥ ε ν(A) , x ∈ X , A ⊆ X .

For the chain P given above, this is clearly impossible due to the periodicity problem. On

the other hand, for the modified chain P this is easy; in fact

P (x, A) ≥ π(A) , x ∈ X , A ⊆ X ,

so we may take ε = 1 in that case. Issues of proving convergence rates of the modified

chain are explored in later sections of this paper.
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Finally, we note that the general idea of considering a random number of iterations is

not new. For example, if Tn ∼ Unif{1, 2, . . . , n} (as opposed to Bn ∼ Binomial(2n, 1/2)),

then the distance of L(XTn
) to stationarity can be bounded using shift-coupling (Aldous

and Thorisson, 1993; Roberts and Rosenthal, 1997a; Roberts and Tweedie, 1999). How-

ever, the resulting shift-coupling bounds are O(1/n) rather than decreasing exponentially

with n, and are thus weaker than the bounds considered here.

3. The Spectrum of P .

In this section we consider reversible Markov chain kernels P , and review two spectral

quantities, interval(P ) and gap(P ), which are closely related to the asymptotic variance

and convergence rates of P , respectively.

Let π(·) be stationary for a reversible Markov transition kernel P . Suppose the chain

is in stationarity, i.e. that L(Xn) = π(·) for every n ∈ Z. Then it is known (e.g. Geyer,

1992) that

lim
n→∞

1
n
Varπ

(
n∑

i=1

g(Xi)

)
=

∞∑
t=−∞

Cov (g(X0), g(Xt)) = Varπ(g)+2
∞∑

t=1

Cov (g(X0), g(Xt)) .

This asymptotic variance is also related to the spectrum of the operator P , as follows.

Define the inner product 〈f, g〉 =
∫
X f(x)g(x)π(dx) for f, g ∈ L2(π), where

L2(π) = {f : X → R ; π(f2) < ∞} .

Assume P is reversible, so that P defines a self-adjoint operator on L2(π). Let P0 = P
∣∣
L2

0(π)

be the restriction of P to L2
0(π), where

L2
0(π) = {f : X → R ; π(f2) < ∞, π(f) = 0} .

(This restriction is made to exclude the non-zero constant functions, which are eigenvectors

corresponding to the eigenvalue 1 of stationarity.) Let σ(P0) be the spectrum of P0 (see

e.g. Conway, 1985; roughly the spectrum corresponds to the set of eigenvalues of the

matrix P0, but generalised to continuous state spaces). Assume P is φ-irreducible, so that

σ(P0) ⊆ [−1, 1) (cf. Mira and Geyer, 1999). We shall see that the distance of the spectrum
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to the value 1 (in two senses, one with absolute values and one without) is closely related

to convergence and variance properties of the corresponding MCMC algorithm.

Let EP0(·) be the resolution of the identity associated with P0, as in the spectral

theorem (see e.g. Conway, 1985; Reed and Simon, 1972; Geyer, 1992; Chan and Geyer,

1994; Mira and Geyer, 1999), so that

g(P0) =
∫

σ(P0)

g(λ)EP0(dλ) ,

for every bounded Borel-measurable function g : σ(P0) → R. Given a bounded Borel-

measurable function g, let Eg,P0 be the spectral measure associated with g and P0, so that

Eg,P0(A) = 〈g, EP0(A) g〉 and

〈g, h(P0)g〉 =
∫

σ(P0)

h(λ)Eg,P0(dλ) , (2)

for every bounded Borel-measurable function h : R → R. In particular, setting h(P0) ≡ 1

in (2), we see that

〈g, g〉 = π(g2) =
∫

σ(P0)

Eg,P0(dλ) . (3)

Then the following is known (Kipnis and Varadhan, 1986; see also Geyer, 1992; Chan and

Geyer, 1994; Mira and Geyer, 1999).

Proposition 1. Let P be the kernel for a reversible, φ-irreducible Markov chain {Xn},

and let Eg,P0(·) be as above. Then

lim
n→∞

1
n
Var

(
n∑

i=1

g(Xi)

)
=
∫

σ(P0)

1 + λ

1− λ
Eg,P0(dλ) .

From Proposition 1, we easily see the following.

Corollary 2. Let P be the kernel for a reversible, φ-irreducible Markov chain {Xn}, and

let Λ = Λ(P0) = supλ∈σ(P0) λ. Then

lim
n→∞

1
n
Var

(
n∑

i=1

g(Xi)

)
≤ 1 + Λ

1− Λ
π(g2) <

2
1− Λ

π(g2) .
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Proof. Since λ → 1+λ
1−λ is an increasing function for λ ∈ σ(P0) ⊆ [−1, 1), we have from

Proposition 1 that

lim
n→∞

1
n
Var

(
n∑

i=1

g(Xi)

)
=
∫

σ(P0)

1 + λ

1− λ
Eg,P0(dλ)

≤
∫

σ(P0)

1 + Λ
1− Λ

Eg,P0(dλ) =
1 + Λ
1− Λ

∫
σ(P0)

Eg,P0(dλ) =
1 + Λ
1− Λ

π(g2)

by (3). Also Λ < 1, so 1 + Λ < 2.

We conclude that the quantity

interval(P ) ≡ 1− Λ(P0) ≡ 1− sup
λ∈σ(P0)

λ

is very closely related to the asymptotic variance of empirical estimators of functionals as

in (1).

We next turn to distributional convergence. The following is essentially standard

spectral theory, though we include a proof for completeness. For a signed measure ν on

X , we write ‖ν‖TV = supA⊆X |ν(A)| for total variation distance, and write ‖ν‖L2(π) =∫
X ( dν

dπ )2 dπ (with ‖ν‖L2(π) = ∞ if ν is not absolutely continuous with respect to π) for

L2(π) distance.

Proposition 3. Let P be the kernel for a reversible Markov chain. Let r(P0) =

supλ∈σ(P0) |λ| be the spectral radius of P0. Then

sup
‖µ‖L2(π)<∞

lim
n→∞

1
n

log ‖µPn(·)− π(·)‖TV = log r(P0) ,

where the supremum is taken over all probability distributions µ on X having finite L2(π)-

norm.

Proof. It follows from Roberts and Rosenthal (1997b) (cf. Roberts and Tweedie, 2000,

Theorem 3) that

sup
‖µ‖L2(π)<∞

lim
n→∞

1
n

log ‖µPn(·)− π(·)‖TV = sup
‖µ‖L2(π)<∞

lim
n→∞

1
n

log ‖µPn(·)− π(·)‖L2(π) ,
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i.e. that we can replace TV distance by L2(π) distance in the statement of the Proposition.

We have

‖µPn(·)− π(·)‖L2(π) ≤ ‖µ(·)− π(·)‖L2(π)‖Pn
0 ‖L2(π)

≤ ‖µ(·)− π(·)‖L2(π)r(P0)n .

Hence, taking logs, dividing by n, and letting n →∞, we see that

sup
µ∈L2(π)

lim
n→∞

1
n

log ‖µPn(·)− π(·)‖L2(π) ≤ log r(P0) .

Conversely, by the spectral radius formula (e.g. Conway, 1985), we have

r(P0)n = ‖Pn
0 ‖n = sup{

(‖Pnf‖L2(π)

‖f‖L2(π)

)1/n

; f ∈ L2
0(π)}

≤ sup{
(‖Pn(g − 1)‖L2(π)

‖g − 1‖L2(π)

)1/n

; g ∈ L2(π), g ≥ 0, π(g) = 1}

= sup{

(
‖Pn(d(µ−π)

dπ )‖L2(π)

‖d(µ−π)
dπ ‖L2(π)

)1/n

; µ prob dist, ‖µ‖L2(π) < ∞}

= sup{
(‖(µ− π)Pn‖L2(π)

‖µ− π‖L2(π)

)1/n

; µ prob dist, ‖µ‖L2(π) < ∞} .

Hence, taking logs, dividing by n, and letting n →∞, we see that

log r(P0) ≤ sup
µ∈L2(π)

lim
n→∞

1
n

log ‖µPn(·)− π(·)‖L2(π) .

The result follows.

Proposition 3 says that for large n, we roughly have

‖µPn(·)− π(·)‖TV ≈ C r(P0)n = C (1− (1− r(P0)))n

≈ C (e−(1−r(P0)))n = C (e−n(1−r(P0))) ,

at least if r(P0) ≈ 1 as it usually would be. Hence, the quantity

gap(P ) ≡ 1− r(P0) ≡ 1− sup
λ∈σ(P0)

|λ|
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is a good measure of the distributional convergence rate of P . (Similar considerations are

also discussed elsewhere, see e.g. Schervish and Carlin, 1992.)

4. Modifications for near-periodic chains.

The previous section showed that interval(P ) is a good measure of a chain’s asymp-

totic variance properties, while gap(P ) is a good measure of a chain’s distributional con-

vergence properties.

Now, clearly interval(P ) ≥ gap(P ). Also, these two quantities will often be similar

or identical. However, they could be very different if e.g. all λ ∈ σ(P ) are far from 1, but

one of them is close to −1, so interval(P ) is large but gap(P ) is small. On the other hand,

we now argue that simple modifications of the Markov chain itself allow us to deal with

this situation quite easily.

Let

Bn ∼ Binomial(2n, 1/2) ,

with {Bn} chosen independently of the Markov chain {Xn}. Then Bn/n → 1 as n →∞,

so Bn ≈ n for large n. Also
∑

m P(Bn = m)Pm = (P )n, where P = 1
2I + 1

2P . That

is, (P )n corresponds to running the original Markov chain P for Bn steps instead of n.

Hence, P is just a slight modification of P .

The following result shows that in the reversible case at least, if P has good asymptotic

variance properties, then P also has good convergence rate properties (and hence could be

used to generate a random variable having distribution very close to stationary). To state

it, let ζ(ε) = ε− 1
4ε2, so that ζ(ε) ≤ ε, and ζ(ε) ≈ ε for small ε.

Theorem 4. If P is reversible, then gap(P ) = ζ(interval(P )).

Proof. We have that

P =
(

I + P

2

)2

.

Now, let η(λ) = ( 1
2 (1 + λ))2. Then since P is self-adjoint, we have (see e.g. Conway, 1985)

that

σ(P 0) = σ

((
I0 + P0

2

)2
)

= {(1
2
(1 + λ))2 ; λ ∈ σ(P0)} = {η(λ) ; λ ∈ σ(P0)} .
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Note that for λ ∈ σ(P0) ⊆ R, we have η(λ) ≥ 0. Also, η(λ) is an increasing function of λ

for λ ∈ σ(P0) ⊆ [−1, 1]. Hence,

r(P 0) = sup
λ∈σ(P 0)

|λ| = sup
λ∈σ(P 0)

|η(λ)| = sup
λ∈σ(P0)

η(λ) = η

(
sup

λ∈σ(P0)

λ

)
.

The statement now follows since 1− η(x) = ζ(1− x).

It follows from Theorem 4 that the convergence rate properties of P are at least as

good (and essentially the same) as the asymptotic variance properties of P . That is, the

simple modification of using P instead of P gives us distributional convergence which is

as fast as would be indicated by the asymptotic variance properties. (In particular, if

interval(P ) ≈ 0, then gap(P ) ≈ interval(P ). On the other hand, if interval(P ) ≈ 2 as

for an extremely antithetic chain, then gap(P ) ≈ 1, indicating extremely fast convergence.)

We shall refer to P as the binomial modification of P . More generally, we shall later

consider Pµ ≡
∑

n µ{n}Pn for various probability measures µ on the non-negative integers;

we then have P = Pµ for the special case µ{0} = µ{1} = 1/2. On the other hand, if (say)

P were nearly periodic with period 3, then one might instead choose µ{0} = µ{1} =

µ{2} = 1/3.

Next define P̂n by P̂n = 1
2 (Pn + Pn+1). That is, P̂n corresponds to running P for

Ln iterations, where P (Ln = n) = P (Ln = n + 1) = 1/2, with {Ln} chosen independently

of the Markov chain itself. Set θn(λ) = 1
2λn + 1

2λn+1 = λn(1 − 1
2 (1 − λ)). Then we have

the following.

Theorem 5. If P is reversible, then

r(P̂n
0 ) = sup

λ∈σ(P0)

θn(λ) .

(In particular, if supσ(P0) ≈ 1, then r(P̂n
0 ) ≈ supσ(Pn

0 ), while if supσ(P0) ≈ −1, then

r(P̂n
0 ) ≈ 0.)
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Proof. We have using self-adjointedness of P that

σ(P̂n
0 ) = {1

2
λn +

1
2
λn+1 ; λ ∈ σ(P0)} = {θn(λ) ; λ ∈ σ(P0)} .

The result follows by taking supremums.

More generally, we could consider PµPn in place of P̂n, for various probability mea-

sures µ on the non-negative integers. We then have P̂n = PµPn for the special case

µ{0} = µ{1} = 1/2. In fact, running PµPn on an initial distribution ρ is precisely equiv-

alent to running Pn on the initial distribution ρPµ. That is, modifications such as P̂ (as

opposed to P ) correspond merely to choosing a more intelligent initial distribution.

Since intelligent initial distributions generally provide only slight improvement in con-

vergence properties, in this paper we mostly concentrate on generalisations of P
n

(i.e.,

(Pµ)n for various µ) as opposed to generalisations of P̂n (i.e., PµPn for various µ).

5. Uniform convergence rates.

We now turn our attention to methods of proving convergence rates for Markov chains

with kernels of the form Pµ as above. We first recall a well-known fact about Markov

chains and minorisation conditions, which can be proved by coupling (see e.g. Doeblin,

1938; Doob, 1953; Griffeath, 1975; Pitman, 1976; Nummelin, 1984; Lindvall, 1992; Meyn

and Tweedie, 1993; Rosenthal, 1995a, 1995b).

Proposition 6. Let P be the transitions for a Markov chain on a state space X , having

stationary distribution π(·). Suppose P satisfies the minorisation condition P (x, ·) ≥ εν(·)

for all x ∈ X , where ε > 0 and where ν(·) is any probability measure on X . Then

‖Pm(x, ·)− π(·)‖TV ≤ (1− ε)m .

Now, if P is (say) a nearly periodic chain, then it is unlikely we will have P (x, ·) ≥ εν(·)

for all x ∈ X for any non-negligible ε. On the other hand, it is more likely that we will
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have Pµ(x, ·) ≥ εν(·) for all x ∈ X , where Pµ represents (as before) the same Markov

chain but run for a random number of iterations.

To proceed, let µ be any probability measure on the non-negative integers. Let Pµ =∑
n Pnµ{n} (where P 0 is the identity operator, i.e. P 0(x, ·) = δx(·)). (In the language

of Meyn and Tweedie (1993), Pµ is a sampled chain.) Then (Pµ)m = Pµ∗m

, where µ∗m

is the m-fold convolution of µ with itself (cf. Meyn and Tweedie, 1993, Lemma 5.5.2(i)).

Equivalently, (Pµ)m is generated by choosing Tm ∼ µ∗m independently of {Xn}, and

considering XTm
.

In terms of Pµ, we have the following.

Theorem 7. Suppose Pµ(x, ·) ≥ εν(·) for all x ∈ X , where ε > 0 and where ν(·) is any

probability measure on X . Then for all x ∈ X ,

‖(Pµ)m(x, ·)− π(·)‖TV ≡ ‖L(XTm
|X0 = x)− π(·)‖TV ≤ (1− ε)m ,

where Tm ∼ µ∗m is chosen independently of {Xn}.

Proof. Simply apply Proposition 6 to Pµ.

Theorem 7 thus says that, if we have found a distribution µ such that Pµ satisfies a

minorisation condition, and we run our original Markov chain for an appropriate random

number of steps, then the resulting value will be very close to stationary. This provides a

simple mechanism for obtaining a sample from a given distribution π(·), even if the corre-

sponding MCMC algorithm is periodic (or nearly so). Some examples applying Theorem 7

are presented in Section 7.

Of course, in some MCMC applications, one wishes to average the results obtained

from a single long run of the chain. In this case, the asymptotic variance is a more relevant

quantity. What the above results say is that, if the original chain has good asymptotic

variance properties (and hence is good for averaging), then the modified chain has in

addition good convergence properties (and hence is good for obtaining a sample).

On the other hand, Theorem 7 can only be applied if Pµ is uniformly ergodic. The

next section considers modifications for non-uniform chains.
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Remark. As observed in Roberts and Rosenthal (2000), small-set conditions of the

form P (x, ·) ≥ εν(·) for all x ∈ C, can be replaced by pseudo-small conditions of the form

P (x, ·) ≥ ενxy(·) and P (y, ·) ≥ ενxy(·) for all x, y ∈ C, without affecting any bounds which

use coupling (which includes all the bounds considered here). That is, rather than having

a single minorising measure ν(·) for all x ∈ C, it suffices to have a different minorising

measure νxy(·) for each pair x, y ∈ C. For ease of exposition we do not emphasise this fact

here. However, it should be noted that all bounds presented here such as Theorems 7, 11,

and 12 all go through without change if the minorising measure ν(·) is allowed to vary

depending on the pair x, y ∈ C.

6. Non-uniform convergence rates.

Suppose we know only that

P (x, ·) ≥ εν(·) , x ∈ C , (4)

where C ⊆ X (as opposed to C = X as in Proposition 6). Suppose we also know that a

drift condition

(P × P )h(x, y) ≤ h(x, y) / α , (x, y) 6∈ C × C (5)

is satisfied, for some function h : X × X → [1,∞) and constant α > 1, where

(P × P )h(x, y) ≡
∫
X

∫
X

h(z, w) P (x, dz) P (y, dw) .

Under such conditions, non-uniform convergence rates are available. In particular, a slight

modification of the argument and bound in Rosenthal (1995b), which follows as a special

case of Douc et al. (2001), and which also takes into account the ε-improvement [i.e.,

replacing A by A− ε in (7)] of Roberts and Tweedie (1999), is the following.

Proposition 8. Suppose there is C ⊆ X , h : X ×X → [1,∞), a probability distribution

ν(·) on X , α > 1, and ε > 0, such that (4) and (5) hold. Suppose also that

sup
(x,y)∈C×C

(P × P )h(x, y) ≤ A . (6)

Then for any initial distribution L(X0), and any integer j ≤ k,

‖L(Xk)− π(·)‖TV ≤ (1− ε)j + α−k max[1, (α(A− ε))j−1]E[h(X0, Y0)] , (7)

with the expectation taken with respect to L(X0) and with respect to Y0 ∼ π(·).
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Versions of Proposition 8 have been applied to a number of simplified examples in

Meyn and Tweedie (1994), Rosenthal (1995a,b), and Roberts and Tweedie (1999). They

have also been applied to more substantial examples of the Gibbs sampler, including a hi-

erarchical Poisson model (Rosenthal, 1995b), a version of the variance components model

(Rosenthal, 1996), and a number of newer examples (Jones and Hobert, 2001). Fur-

thermore, with the aid of auxiliary simulation to approximately verify the drift and mi-

norisation conditions, approximate versions of Proposition 8 have been applied to more

complicated Gibbs sampler examples (Cowles and Rosenthal, 1998; Cowles, 2001).

Note that if P (x, dy) ≥ h(x, y) dy, then we can achieve (4) by setting

ε =
∫
X

inf
x∈C

h(x, y) dy (8)

and ν(dy) = ε−1 infx∈C h(x, y) dy. Note also that the quantity E[h(X0, Y0)] in Proposi-

tion 8 may be computed with respect to any joint law of X0 and Y0 provided their marginal

distributions are L(X0) and π(·) respectively, though typically one will take X0 and Y0 to

be independent.

In verifying (5), it is often simpler to verify a univariate drift condition which bounds

PV , where V : X → R. One can then construct a bivariate function h from V , and

conclude a drift condition of the form (5) for h. The following result summarises various

possibilities, following Rosenthal (1995b,c), Cowles and Rosenthal (1998), and Roberts

and Tweedie (1999). Parts (i) to (iv) follow by direct computation, simply noting that if

(x, y) 6∈ C × C, then either V (x) ≥ d∗ or V (y) ≥ d∗ (or both). Part (v) is easily seen

by taking expectations with respect to π of both sides of PV ≤ λV + b (cf. Meyn and

Tweedie, 1993, Proposition 4.3(i)).

Proposition 9. Let V : X → R, let C ⊆ X , let 1C be the indicator function of

C, let d∗ = infx6∈C V (x), let d∗ = supx∈C V (x), and let M > 0. (Typically M = 1,

C = {x ∈ X ; V (x) ≤ d}, and d∗ = d∗ = d.)

(i) If PV (x) ≤ λV (x) + b for all x ∈ X , where V ≥ 0, then (5) and (6) are satisfied with

h(x, y) = 1 + MV (x) + MV (y), α−1 = λ + 1+2Mb−λ
1+Md∗

, and A = 1 + 2M(λd∗ + b).

(ii) If PV (x) ≤ λV (x) + b for all x ∈ X , where V ≥ 1, then (5) and (6) are satisfied

with h(x, y) = (M/2)(V (x) + V (y)) + (1 − M), α−1 = λ + Mb+(1−λ)(1−M)
(M/2)(d∗+1)+(1−M) , and
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A = M(λd∗ + b) + (1−M).

(iii) If PV (x) ≤ λV (x) + b1C(x) for all x ∈ X , where V ≥ 0, then (5) and (6) are satisfied

with h(x, y) = 1 + MV (x) + MV (y), α−1 = λ + 1+Mb−λ
1+Md∗

, and A = 1 + 2M(λd∗ + b).

(iv) If PV (x) ≤ λV (x) + b1C(x) for all x ∈ X , where V ≥ 1, then (5) and (6) are satisfied

with h(x, y) = (M/2)(V (x) + V (y)) + (1 − M), α−1 = λ + (M/2)b+(1−λ)(1−M)
(M/2)(d∗+1)+(1−M) , and

A = M(λd∗ + b) + (1−M).

(v) Furthermore, under any of (i) to (iv), we have Eπ[V (Y0)] ≤ b
1−λ , where the expectation

is taken with respect to Y0 ∼ π(·). Hence, Eπ[h(x, Y0)] ≤ 1 + MV (x) + Mb
1−λ under (i)

or (iii), and Eπ[h(x, Y0)] ≤ (M/2)(V (x) + b
1−λ ) + (1−M) under (ii) or (iv).

Suppose now that we only have Pµ(x, ·) ≥ εν(·) for all x ∈ C, where C ⊆ X , for some

probability distribution µ on the non-negative integers. (This means that C is petite for

P in the language of Meyn and Tweedie, 1993; if P is aperiodic then this implies that C

is also small for P , but without any control over the corresponding values of k0 and ε.)

Suppose also that (5) holds for P . That is, suppose we have a drift condition for P , but a

minorisation condition for Pµ. How can we obtain convergence bounds in that case?

One method is to convert the drift condition for P to one for Pµ, as follows.

Proposition 10. (i) Suppose PV (x) ≤ φ(V (x)) for all x ∈ X , where φ : [1,∞) → [1,∞)

is non-decreasing. Then

PnV (x) ≤ φ(φ(. . . φ(V (x)) . . .)) ≡ φn(V (x)) ,

and

PµV (x) ≤
∑

n

µ{n}φn(V (x)) .

(ii) In the special case φ(t) = λt + b with λ ≤ 1, then PµV ≤ λµV + bµ, where

λµ = Mµ(λ) ; bµ = b

(
1−Mµ(λ)

1− λ

)
<

b

1− λ
;

here Mµ(s) = Eµ[sZ ] =
∑

n µ{n}sn is the probability generating function of µ.
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Proof. (i) follows immediately by iterating the inequalities. For (ii), we compute that if

φ(t) = λt + b, then

φn(t) = λnt + (
n−1∑
i=0

λi)b = λnt + b

(
1− λn

1− λ

)
.

Hence,

PµV (x) ≤
∑

n

µ{n}φn(V (x)) =
∑

n

µ{n}
(

λnV (x) + b

(
1− λn

1− λ

))

= Mµ(λ)V (x) + b

(
1−Mµ(λ)

1− λ

)
,

as claimed.

That is, to replace P by Pµ, we must replace λ by λµ = Mµ(λ), and must replace b

by bµ = b
(

1−Mµ(λ)
1−λ

)
. Some special cases are worth noting:

(a) If µ{1} = 1, then λµ = λ and bµ = b, as they must.

(b) If µ{k0} = 1, then λµ = λk0 and bµ = b
(

1−λk0

1−λ

)
.

(c) If µ{0, 1, 2, . . . , k0 − 1} = 0, then λµ ≤ λk0 .

Combining Proposition 10 with Proposition 8 applied to Pµ, and with Proposition 9

parts (i) and (ii) and (v) (with M = 1, for simplicity), we obtain the following.

Theorem 11. Suppose PV (x) ≤ λV (x) + b where λ < 1 and V : X → [0,∞). Suppose

also that Pµ(x, ·) ≥ εν(·) for all x ∈ X such that V (x) ≤ d. Then for any integer j ≤ k,

‖L(XTk
)− π(·)‖TV ≤ (1− ε)j + α−k

µ max[1, (αµ(Aµ − ε))j−1] (1 +
b

1− λ
+ E[V (X0)]) ,

where Tk ∼ µ∗k is chosen independently of {Xn}, and where

α−1
µ = λµ +

1− λµ + 2bµ

d + 1
= Mµ(λ) +

1−Mµ(λ) + 2b
(

1−Mµ(λ)
1−λ

)
d + 1

,

and

Aµ = sup
x∈C

(Pµ × Pµ)(1 + V (y) + V (x)) ≤ 1 + 2(λµd + bµ) .
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If V ≥ 1, the value of α−1
µ can be decreased slightly to α−1

µ = λµ + 2bµ

d+1 .

Another approach is to try to modify the proofs in Rosenthal (1995b) and Douc et al.

(2001), to take into account jumping a random number ∼ µ of iterations at each attempted

regeneration, instead of just 1 iteration (or just k0 iterations). The following theorem is

proved in the Appendix.

Theorem 12. Suppose (P ×P )h(x, y) ≤ h(x, y) / α for (x, y) 6∈ C ×C, where α > 1 and

h : X × X → [1,∞). Suppose also that Pµ(x, ·) ≥ εν(·) for all x ∈ X such that V (x) ≤ d.

Then for any non-negative integers j and m,

‖L(Xm+Tj )− π(·)‖TV ≤ (1− ε)j + α−m−1Aj−1
µ Eπ[h(X0, Y0)] ,

where Tj ∼ µ∗j is chosen independently of {Xn}, where the expectation is taken with

respect to L(X0) and Y0 ∼ π(·), and where Aµ = supx,y∈C(Pµ × Pµ)h(x, y).

We note that in Theorem 12, unlike Theorem 11, we can verify the drift condition

(P × P )h(x, y) ≤ h(x, y) / α by any of the methods of Proposition 9.

If βi = 1 for all i, then m + Tj = m + j, so the bound of Theorem 12 becomes

‖L(Xm+j)− π(·)‖TV ≤ (1− ε)j + α−m−1Aj−1E[h(X0, X
′′
0 )] .

which is similar to (in fact a slight improvement of) Theorem 12 of Rosenthal (1995b).

If βi = k0 for all i, where k0 ∈ N, then k = m + Tj = m + k0j, and Aµ = Ak0 ≡

supX∈C P k0V (x), so the bound of Theorem 12 becomes

‖L(Xm+k0j)− π(·)‖TV ≤ (1− ε)j + α−m−1Aj−1
k0

E[h(X0, X
′′
0 )] ,

which is similar to (in fact a slight improvement of) Theorem 5 of Rosenthal (1995b).
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7. Examples.

We now present a number of examples, to which we apply the theory of the previous

sections.

Example 1. A periodic continuous chain.

Let X = [0, 2], and define P as follows. For x ∈ [0, 1], P (x, ·) = Unif[1, 2], while for

x ∈ (1, 2], P (x, ·) = Unif[0, 1]. This chain is reversible with respect to π(·) = Unif[0, 2].

This example is simple enough that we can understand its spectrum exactly. Indeed,

note that Ph = h if h is constant; Ph = −h if h(x) = C for x > 1 and h(x) = −C for

x ≤ 1 for some constant C; and Ph = 0 if
∫ 1

0
h =

∫ 2

1
h = 0. This shows that P has a one-

dimensional eigenspace corresponding to the eigenvalue 1, a one-dimensional eigenspace

corresponding to the eigenvalue −1, and an infinite-dimensional eigenspace corresponding

to the eigenvalue 0. Furthermore, since every measurable function can be written as a

linear combination from these three eigenspaces, we see that this completely specifies the

spectrum of P . Thus, σ(P ) = {−1, 0, 1} and σ(P0) = {−1, 0}.

Hence, interval(P ) = 1 while gap(P ) = 0. In words, we see that this example (like

that of Section 2) has excellent asymptotic variance properties, but very poor distributional

convergence properties.

On the other hand, by Theorem 4, we see that gap(P ) = 1, i.e. the binomial-modified

chain P
m

converges to π(·) extremely quickly, as does P̂m. (On the other hand, unlike the

simple example of Section 2, this chain will not converge exactly after one iteration, since

for any m, P
m

always includes probability 2−2m of not moving at all.)

Furthermore, from the perspective of Theorem 7, we see that we cannot have P k0(x, ·) ≥

εν(·) with ε > 0, for all x ∈ X for any k0 and ν(·). On the other hand, with µ{1} = µ{2} =

1/2, we have Pµ(x, ·) = π(·) for all x ∈ X , so we can take ε = 1 in the uniform minorisation

context of Theorem 7, to get that ‖(Pµ)m(x, ·)−π(·)‖TV = 0 for any m ≥ 1 and all x ∈ X .

Example 2. A nearly-periodic chain.

Again let X = [0, 2], and suppose now that we only know there is some δ1, δ2 > 0 such

that for x ∈ [0, 1], P (x, ·) ≥ δ1Unif[1, 2], while for x ∈ (1, 2], P (x, ·) ≥ δ2Unif[0, 1]. (This

means that e.g. for x ∈ [0, 1] and 1 ≤ a < b ≤ 2, P (x, [a, b]) ≥ δ1(b − a).) Suppose the
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chain has some stationary (though perhaps non-uniform) distribution π(·). (The previous

example corresponds to δ1 = δ2 = 1 and π(·) = Unif[0, 2].) Since we know less about this

chain, it is more difficult to directly understand its spectral properties.

On the other hand, we can still use Theorem 7. Indeed, we have P (x, ·) ≥ δ2Unif[0, 1]

for x ∈ (1, 2], and P 2(x, ·) ≥ δ1δ2Unif[0, 1] for x ∈ [0, 1]. Similarly P (x, ·) ≥ δ1Unif[1, 2]

for x ∈ [0, 1], and P 2(x, ·) ≥ δ1δ2Unif[1, 2] for x ∈ (1, 2]. Hence, with µ{1} = µ{2} = 1/2,

we have Pµ(x, ·) ≥ ε ν(·) for all x ∈ X , where ε = min[δ1, δ2, δ1δ2] = δ1δ2, and ν(·) =

Unif[0, 2].

Hence, by Theorem 7, ‖(Pµ)m(x, ·)−π(·)‖TV ≤ (1−δ1δ2)m. This provides a bound on

how many iterations of Pµ should be done (or equivalently, how many random iterations

of P should be done), to get sufficiently close to (say, within 0.01 of) the stationary

distribution π(·).

Example 3. A chain of period D ≥ 3.

Suppose now that X = {1, 2, . . . , D}, where D ≥ 3. Suppose further that P (i, {i +

1}) = 1 for 1 ≤ i ≤ D − 1, and P (D, {1}) = 1. This chain has stationarity distribution

π(·) = Unif(X ). However, the chain is periodic of degree D. Hence, it does not converge

in distribution at all.

We note that the modification P̂ from Section 4 does not help. Indeed, P̂n(i, {j}) = 0

unless j ≡ i + n (mod D) or j ≡ i + n + 1 (mod D). Indeed, the distribution P̂n(i, ·)

always satisfies ‖P̂n(i, ·)− π(·)‖ = (D − 2)/D, and does not go to zero as n →∞.

The modification P from Section 4 does indeed help. In that case, the distribution

P
n
(i, ·) is equal to the distribution of Yn = Bn+i (mod D) where Bn ∼ Binomial(2n, 1/2).

Hence, ‖Pn
(i, ·)− π(·)‖ = ‖L(Yn)− π(·)‖, which goes to zero, gradually, as n →∞.

Even better is to consider Pµ, where µ is uniform on {0, 1, 2, . . . , D− 1}. In that case

Pµ(i, ·) = π(·) for any i, so ‖(Pµ)m(i, ·) − π(·)‖ = 0 for any i ∈ X and any m ≥ 1. That

is, Pµ converges to stationarity in just one step.

Example 4. A small set in many pieces.

Suppose now that the state space X contains disjoint subsets C1, C2, . . . , CD such that

P (x, ·) ≥ ε0ν(·) for all x ∈ CD, and P (x,Ci+1) ≥ δi for all x ∈ Ci for 1 ≤ i ≤ D − 1.
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Let µ be uniform on {1, 2, . . . , D}. Then we see by inspection that the union
⋃

i Ci is

small for Pµ, with

Pµ(x, ·) ≥ 1
D

δ1 . . . δD−1ε0 ν(·) ≡ ε ν(·) ,

where ε = 1
D δ1 . . . δD−1ε0. (Such considerations generalise the notion of transfer condition

discussed in Roberts and Rosenthal, 1997a, Theorem 6.)

Suppose also that PV ≤ λV + b1C , where V : X → [1,∞), and where
⋃

i Ci = {x ∈

X ; V (x) ≤ d}. Then the bounds of Theorem 11 and Theorem 12 can be applied.

We compute numerically with D = 20, ε = 0.3, δi = 0.8 for all i, λ = 0.9, b = 10,

and d = 200. For Theorem 11, we compute using Proposition 10 that λµ = 0.395291 and

bµ = 60.4709. Then from Proposition 9, α−1
µ = λµ + 2bµ

d+1 = 0.797091, and Aµ = λµd+bµ =

179.058. The bound of Theorem 11 then becomes

‖L(XTk
)− π(·)‖TV ≤ (0.996541)j + 101(3.0383)j−1(20.5523)k ,

which is equal to 0.00782318 if j = 1, 400 and k = 34, 000. Since µ has mean 10.5, this

proves convergence (with a randomised number of iterations) after about (10.5)k = 357, 000

iterations.

For Theorem 12, we see from Proposition 9 that α−1 = λ + b
d+1 = 0.933223, with Aµ

as above. The bound of Theorem 11 then becomes

‖L(Xm+Tj
)− π(·)‖TV ≤ (0.996541)j + 101(179.058)j−1(0.933223)1+m ,

which is equal to 0.00782318 if j = 1, 400 and m = 106, 000. This proves convergence (again

with a randomised number of iterations) after about m + (10.5)j = 120, 700 iterations.

We thus see that each of Theorem 11 and Theorem 12 provide rigorous bounds on

convergence after a randomised number of iterations. Each of the bounds requires quite

a large number of iterations to converge. However, the bound of Theorem 11 requires

over 350, 000 iterations while the bound of Theorem 12 requires about 120, 000 iterations.

Hence, for this example, the bound of Theorem 12 is nearly three times stronger than that

of Theorem 11.
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Example 5. A dimension-jumping Metropolis-Hastings algorithm.

Consider the chain of Proposition 3.1 of Brooks, Guidichi, and Roberts (2001). This

is a very simple example of a dimension-jumping Metropolis-Hastings algorithm, in the

spirit of e.g. Norman and Filinov (1969), Preston (1977), and Green (1995).

The Markov chain is defined as follows. Let X = {e} ∪ [0, 1], and π({e}) = p, and

π(dy) = (1−p)f(y) for y ∈ [0, 1], where 0 < p < 1 and
∫ 1

0
f(y)dy = 1. We run a Metropolis-

Hastings algorithm for π(·), with proposal kernel {Q(x, ·)}x∈X defined by Q(y, {e}) = 1

for y ∈ [0, 1], and Q(e, dy) = q(y)dy for y ∈ [0, 1], where
∫ 1

0
q(y)dy = 1.

It seems reasonable to try to get a minorisation condition with ν({e}) = 1, i.e. to

show that P (x, {e}) ≥ ε for all x ∈ X , or perhaps that Pµ(x, {e}) ≥ ε for all x ∈ X .

We compute that

S ≡ P (e, {e}) = 1− P (e, [0, 1]) = 1−
∫ 1

0

min
[
1,

(1− p)f(y)
p

1
q(y)

]
q(y)dy .

If q ≡ f , then S = max[0, 2p−1
p ]. Also,

I ≡ inf
0≤y≤1

P (y, {e}) = inf
0≤y≤1

min
[
1,

p

(1− p)f(y)
q(y)
1

]

= min
[
1,

p

(1− p)
inf

0≤y≤1

q(y)
f(y)

]
.

If q ≡ f , then I = min[1, p
1−p ].

We therefore see that P (x, {e}) ≥ ε for all x ∈ X , where ε = min[S, I]. However, if

e.g. q ≡ f (as suggested by Brooks et al., 2001) and p ≤ 1/2, then S = 0 and so ε = 0.

In fact, if q ≡ f and p = 1/2, then the chain is periodic, always accepting its moves and

therefore always jumping back and forth between {e} and [0, 1]. Hence, in this case we

will never have P k0(x, {e}) ≥ ε for all x ∈ X , for any ε > 0.

On the other hand, obviously P 0(e, {e}) = 1 (by definition, in fact). Hence, if µ{0} =

µ{1} = 1/2, then Pµ(x, {e}) ≥ I for all x ∈ X . Hence, by Theorem 7, we have

‖(Pµ)m(x, ·)− π(·)‖ ≤ (1− I)m , x ∈ X ,

so that ‖L(XBn
)−π(·)‖ ≤ (1−I)m regardless of the initial distribution L(X0) (where Bn ∼

Binomial(2n, 1/2) is independent of {Xn}). Note that if q ≡ f , then 1− I = max[0, p
1−p ],
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so in that case we obtain

‖(Pµ)m(x, ·)− π(·)‖ ≤ max[0, (
p

1− p
)m] , x ∈ X .

Example 6. An antithetic Metropolis algorithm.

Let X = R, let γ > 1, let a > 0, and let π(dx) ∝ f(x) dx where the density f is

defined by

f(x) = e−a|x−sign(x)γ| , x ∈ R ,

where sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0. The density of f is thus a

bimodal distribution with modes at ±γ, which represents the continuous merging of two

double-exponential densities.

We shall consider running a Metropolis algorithm for π(·). One possible proposal

distribution is Unif[x−1, x+1]; however this would take a very long time to move between

the two modes. Instead, we shall use the antithetic proposal distribution given by Q(x, ·) =

Unif[−x − 1,−x + 1], to do faster mode-hopping. That is, Q(x, dy) = q(x, y)dy where

q(x, y) = 1
2 I(|y + x| ≤ 1).

Clearly, this Metropolis algorithm will not be uniformly ergodic. Indeed, we always

have
∣∣|Xn+1| − |Xn|

∣∣ ≤ 1, while X is unbounded, so clearly {Xn} cannot converge from

everywhere in X in a fixed number of iterations. It is thus necessary to turn to the results

of Section 6.

We let V (x) = f(x)−1/2 = ea|x−sign(x)γ|/2 (so V ≥ 1), and let C = {x ∈ X ; |x −

sign(x)γ| ≤ 1} = {x ∈ X ; V (x) ≤ ea/2} (so d = ea/2). We then see (using symmetry) that

for x 6∈ C,

PV (x) / V (x) =
1
2

∫ 1

−1

min
[
1, e−az

]
eaz/2 dz + r (9)

where r = 1
2

∫ 1

0
(1− e−az) dz is the rejection probability from x.

Also for x ∈ C, the quantity PV (x) − λV (x) is maximised at x = ±γ. Hence,

PV ≤ λV + b if

b = PV (0)− λV (0) =
∫ 1

0

eaz/2e−azdz +
∫ 1

0

(1− e−az)dz − λ .
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We next turn to the minorisation condition. Now, since C consists of two intervals,

one near γ and one near −γ, and γ ≥ 1, there is clearly no overlap at all in {P (x, ·)}x∈C .

Even {P k0(x, ·)}x∈C will have very little overlap unless k0 is extremely large. Furthermore,

if µ{0} = µ{1} = 1
2 , then {Pµ(x, ·)}x∈C = {P (x, ·)}x∈C will again have no overlap at all.

On the other hand, if µ{2} = µ{3} = 1
2 , then {Pµ(x, ·)}x∈C will have substantial

overlap. Indeed, let C+ = {x ∈ X ; x > 0} and C− = {x ∈ X ; x < 0}. Then for x ∈ C+,

we will always have P (x, [−γ− 1
2 , −γ+ 1

2 ]) ≥ 1/4. Hence, P 2(x, ·) will always have density

at least 1/8 throughout the interval [γ− 1
2 , γ + 1

2 ]. Furthermore the acceptance probability

at the point −γ + z will be at least e−a|z|. Hence, P 2(x, dw) ≥ 1
4κ dw for x ∈ C+ and

w ∈ [γ− 1
2 , γ + 1

2 ], where κ ≡ 1
2

∫ 1/2

−1/2
e−a|z| dz =

∫ 1/2

0
e−az dz. Iterating this argument, we

see that P 3(x, dw) ≥ 1
4κ2dw for x ∈ C+ and w ∈ [γ− 1

2 , γ + 1
2 ]. We conclude by symmetry

that with µ{2} = µ{3} = 1
2 , Pµ(x, dw) ≥ 1

4κ2dw for x ∈ C and either |w − γ| ≤ 1
2 or

|w + γ| ≤ 1
2 . Hence, by (8), we have Pµ(x, ·) ≥ ε ν(·) for all x ∈ C, with

ε = 2(1/4)κ2 = κ2/2 =
1
2

(
1
2

∫ 1/2

−1/2

e−a|z| dz

)2

.

We compute the bounds of Theorem 11 and Theorem 12 numerically with a = 10.

The above arguments give d = 148.413, λ = 0.648655, b = 0.450002, κ = 0.0993262, and

ε = 0.00493285. In the context of Theorem 11, we then have λµ = 0.346838, bµ = 0.836568,

α−1
µ = 0.358036, and Aµ = 52.3119. Setting j = 1, 000 and k = 5, 000, the bound of

Theorem 11 gives

‖L(XTk
)− π(·)‖TV ≤ 0.00711853 ,

where E[Tk] = 2.5 k = 12, 500. On the other hand, in the context of Theorem 12 we have

α−1 = 0.654678. Setting j = 1, 000 and m = 10, 000, the bound of Theorem 12 gives

‖L(Xm+Tj
)− π(·)‖TV ≤ 0.00711853 ,

where E[m + Tj ] = m + 2.5 j = 12, 500.

Hence, Theorem 11 and Theorem 12 give very similar convergence bounds for this

chain. Each of them provides a result which is overly conservative, but not totally unrea-

sonable (i.e. it is quite feasible to simulate XTk
or Xm+Tj

here). Furthermore, each of the
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bounds requires doing a random number of iterations of the original chain, to reasonably

bound the convergence.

Example 7. A multi-dimensional antithetic Metropolis simulation.

Let X = R50 be fifty-dimensional space. Let π(dx) = f(x) dx, where

f(x) ∝ e
−
∑50

j=1
(xj−γ sign(

∑
i
xi)1)2

, x ∈ R50 ,

where γ > 0 and 1 = (1, 1, . . . , 1). The distribution π(·) is thus a “merging” of two normal

distributions, with modes at ±γ1.

Consider running a Metropolis algorithm X0,X1, . . . for π(·), with one of two different

proposal distributions: Q1(x, ·) = N(x, σ2 I), and Q2(x, ·) = N(−x, σ2 I). That is, the

proposals are normally distributed, with variance σ2 times the identity matrix, and with

mean either x or −x. Hence, Q1 is a non-antithetic proposal, while Q2 is an antithetic

proposal.

We simulated this chain numerically with γ = 10 and σ = 0.01, starting at the

mode γ1. With proposal Q1, the chain is essentially unable to reach the other mode, and

indeed even after a million iterations there is not a single time n with
∑

i Xn,i < 0 (where

Xn = (Xn,1, . . . , Xn,d)). Hence, with proposal Q1, the chain converges very, very slowly.

With proposal Q2, the chain is antithetic, and jumps between the two modes very

easily. In this case, the autocorrelations of x1 (say) are essentially zero. (The autocor-

relations of (x1)2 are not zero but are still very small, since they are equivalent to the

autocorrelations within a single mode which are very small.)

On the other hand, even with proposal Q2, the chain converges quite slowly in distri-

bution. This is because there are so few rejections (since σ is so small, and f is symmetric)

that the chain exhibits near-periodic behaviour. This is corrected by the use of the schemes

P and P̂ from Section 4, each of which effectively causes convergence.

We simulated this model in dimension 50, with γ = 10 and σ = 0.01, for each of the

proposals Q1 and Q2, and for each of the sampling schemes P , P , and P̂ . For each of the

six combinations, we ran 100,000 separate runs, each for 20 iterations started at the mode

γ 1, and computed the mean of the resulting distribution of X20,1 (which should be zero

in stationarity). We illustrate our results in the following table.
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P P P̂

Q1 9.999944 10.000033 9.999950

Q2 8.127410 0.038961 0.048713

Means of the quantity X20,1 (which should have mean zero in station-
arity) for each of the proposals Q1 and Q2, and for each of the schemes
P , P , and P̂ .

We thus see that, regardless of which scheme is used, the non-antithetic proposal Q1

is unable to produce a simulatation of X20,1 whose distribution is close to the stationary

distribution (which would have a mean of zero). Rather, it always concentrates around the

mean γ = 10 of the mode in which it starts. For the antithetic proposal Q2, the original

chain P is nearly periodic, so again the simulation of X20,1 is far from stationarity and has

an incorrect mean. However, the modified schemes P and P̂ , used in combination with

the antithetic proposal Q2, each produce a simulation which is very close to stationarity

(having mean close to zero).

This provides numerical support, in high dimensions, for the claim that the modifi-

cations P and P̂ may be useful to produce good distributional convergence from nearly-

periodic chains.

8. Conclusion.

It is true that nearly-periodic Markov chains may have very low asymptotic variance

when estimating functionals, even though they have very slow distributional convergence

to stationarity. However, we have argued in this paper that simple modifications of such

chains (involving using a random number of iterations) can produce chains which also have

excellent converence properties. We have also provided a number of theoretical results

concerning the distributional convergence rates of such chains.

It is possible that these ideas can best be used in conjunction with the creation of

antithetic chains. Indeed, it may be possible (as in Example 7 above) to first modify the

transitions of a given chain to create an antithetic chain, and then modify the number of

iterations of the antithetic chain to create a chain with excellent convergence properties.
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Appendix: Proof of Theorem 12.

Let {β1, β2, . . . , I1, I2, . . .} be a collection of independent random variables, where

βi ∼ µ(·), and P(Ii = 1) = 1 − P(Ii = 0) = ε. Assume the βi were chosen so that

β1 + . . . + βj = Tj . More generally, let T0 = 0, and Tk = β1 + . . . + βk for 1 ≤ k ≤ j.

We shall define three processes {Xt}
m+Tj

t=0 , {X ′
t}

m+j
t=0 , and {X ′′

t }
m+j
t=0 , each on X . The

idea is that X will start at X0 and follow P , while X ′ and X ′′ will start at X0 ∼ L(X0)

and X ′′
0 ∼ π(·) respectively, but will each follow a “collapsed time scale” where jumps of

time βi for X will correspond to jumps of time 1 for X ′ and X ′′.

We shall also define auxiliary variables {dt, At, Nt}m+j
t=0 , where: dt is the indicator

function of whether or not X ′ and X ′′ have coupled by time t; At represents the time

index for X which corresponds to the time index t for X ′ and X ′′; Nt represents the

number of times X ′ and X ′′ have attempted to couple by time t.

Formally, we begin by setting X ′
0 = X0 where L(X0) is the given initial distribution,

and choosing X ′′
0 ∼ π(·), with the pair (X0, X

′′
0 ) following any joint law (e.g. independent).

We also set d0 = A0 = N0 = 0. Then iteratively for n ≥ 0, given X ′
n, X ′′

n , dn, An, Nn, XAn
:

1. If dn = 1, then we must have X ′
n = X ′′

n = XAn
≡ x, in which case

a. If (X ′
n, X ′′

n) 6∈ C × C or Nn = j, then set dn+1 = 1, and An+1 = An + 1, and

Nn+1 = Nn. Then choose X ′
n+1 = X ′′

n+1 = XAn+1 ∼ P (x, ·),

b. If (X ′
n, X ′′

n) ∈ C × C, and Nn < j, then set dn+1 = 1, and Nn+1 = Nn + 1,

and An+1 = An + βNn+1 . Then choose X ′
n+1 = X ′′

n+1 = XAn+1 ∼ P βNn+1 (x, ·),

Then fill in XAn+1, XAn+2, . . . , XAn+1−1 according to the transition kernel P ,

conditional on the values of An, An+1, XAn
, and XAn+1 .

2. If dn = 0, then

a. If (X ′
n, X ′′

n) 6∈ C × C or Nn = j, then set dn+1 = 0, and An+1 = An + 1,

and Nn+1 = Nn. Then independently choose X ′
n+1 = XAn+1 ∼ P (X ′

n, ·), and

X ′′
n+1 ∼ P (X ′′

n , ·).

b. If (X ′
n, X ′′

n) ∈ C ×C and Nn < j then set dn+1 = In+1, and Nn+1 = Nn + 1. and

An+1 = An + βNn+1 . Then

i. If In+1 = 1, choose X ′
n+1 = X ′′

n+1 = XAn+1 ∼ ν(·),
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ii. If In+1 = 0, then independently choose

XAn+1 = X ′
n+1 ∼ (1− ε−1)(P βNn+1 (X ′

n, ·)− εν(·)) ,

and

X ′′
n+1 ∼ (1− ε−1)(P βNn+1 (X ′′

n , ·)− εν(·)) .

Under either i or ii, then fill in XAn+1, XAn+2, . . . , XAn+1−1 according to the

transition kernel P , conditional on the values of An, An+1, XAn
, and XAn+1 .

[To better understand the above construction, we note that steps (a) involve updating

each of the three processes according to P , while steps (b) involve updating X according

to P repeated An times, while updating (X ′, X ′′) according to Pµ (and attempting to

couple them if they are not already coupled). Furthermore, step 2.b.i. involves the actual

coupling, while step 2.b.ii. involves updating the processes from their “residual” kernels so

that overall they are updated according to their correct transition kernels. Steps 1. involve

simply maintaining the coupling (i.e. X ′
n = X ′′

n) once it has already occurred.]

This construction is designed so that {Xt} marginally follows its correct transition

kernel P (and, in particular, is marginally independent of the {βi}). Also 0 ≤ Nk ≤ j for

all k. Furthermore, XAk
= X ′

k for all k, and Ak = (k −Nk) + TNk
for all k.

Lemma 8. On the event {Nm+j = j}, we have Xm+Tj
= X ′

m+j .

Proof. It follows from the above observations that if Nj+m = j, then Am+j = (m + j −

j) + Tj = m + Tj , so that Xm+Tj
= XAm+j

= X ′
m+j .

Now, since X ′′
0 ∼ π(·), we have by stationarity that X ′′

k ∼ π(·), for all k. Hence, using

the coupling inequality (e.g. Lindvall, 1992; Rosenthal, 1995a,b), we see that

‖L(Xm+Tj )− π(·)‖TV = ‖L(Xm+Tj )− L(X ′′
m+j)‖TV ≤ P (Xm+Tj 6= X ′′

m+j)

= P [Xm+Tj 6= X ′′
m+j , Nk ≥ j] + P [Xm+Tj 6= X ′′

m+j , Nk ≤ j − 1] . (10)
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By Lemma 8,

P [Xm+Tj 6= X ′′
m+j , Nk ≥ j] = P [X ′

m+j 6= X ′′
m+j , Nk ≥ j]

≤ P[I1 = I2 = . . . = Ij = 0] = (1− ε)j , (11)

which bounds the first term in (10).

Also,

P [Xm+Tj 6= X ′′
m+j , Nm+j ≤ j − 1] ≤ P [Nm+j ≤ j − 1] . (12)

We bound this as in Rosenthal (1995b) by setting

Mk = αk(αAµ)−Nkh(X ′
k, X ′′

k ) .

Then using (5), Mk is easily seen (cf. Rosenthal, 1995b; Douc et al., 2001) to be a

supermartingale, with E[Mk+1 |X ′
k, X ′′

k ,Mk = m] ≤ m (consider separately the cases

(X ′
k, X ′′

k ) ∈ C × C and (X ′
k, X ′′

k ) 6∈ C × C). Hence, since αAµ > 1,

P [Nm+j ≤ j − 1] = P [(αAµ)−Nm+j ≥ (αAµ)−(j−1)]

≤ (αAµ)j−1E[(αAµ)−Nm+j ] (by Markov’s inequality)

≤ (αAµ)j−1E[(αAµ)−Nm+j h(Xm+j , X
′
m+j)] (since h ≥ 1)

= (αAµ)j−1E[α−(m+j)Mm+j ]

≤ (αAµ)j−1α−m−jE[M0] (since {Mk} is supermartingale)

= α−m−j(αAµ)j−1E[h(X ′
0, X

′′
0 )] . (13)

The result now follows by plugging (11) and (13) into (10).

Remark. If we could replace (12) by

P [Xm+Tj 6= X ′′
m+j , Nm+j < j] ≤ P [dm+j = 0, Nm+j < j] , (14)

then we could replace αAµ by max[1, α(Aµ − ε)] in the conclusion of the theorem, thus

very slightly improving the result. Indeed, if βi ≡ 1 then we can do precisely this (Douc et
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al., 2001), leading to Proposition 7 above. However, (14) is not true for general βi. Indeed,

in general if Nm+j < j then we will not have Xm+Tj = X ′
m+j . Hence, we might have

X ′
m+j = X ′′

m+j and dm+j = 1, even though Xm+Tj
6= X ′′

m+j . One can attempt to modify

the construction of X ′ and X ′′ so that they sometimes jump according to Pµ even when

they are not in C ×C, in an effort to force X ′
m+j = Xm+Tj

no matter what; however, this

then invalidates e.g. the drift condition (5), (One can even let X ′ and X ′′ jump according

to Pµ when not in C × C only if they have already coupled; but this still does not take

into account cases where e.g. they couple just before time m + j even though Nj+m is far

less than j.) Hence, we are unable to achieve the ε-improvement (14) when dealing with

random βi values.
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