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Abstract. We consider time-sampled Markov chain kernels, of the form
Pµ =

∑
n µ{n}Pn. We prove bounds on the total variation distance to

stationarity of such chains. We are motivated by the analysis of near-
periodic MCMC algorithms.

1. Introduction.

Consider a Markov chain X0, X1, X2, . . . on a state space X , with transition proba-

bilities P (x, ·) and stationary distribution π(·). Such schemes are often used to estimate

π(h) ≡
∫
X h dπ for various functionals h : X → R, by e.g. π̂(h) = 1

n

∑n
i=1 h(Xi). Specific

examples of such “MCMC algorithms” include the Gibbs sampler and the Metropolis-

Hastings algorithm; for background see e.g. Smith and Roberts (1993), Tierney (1994),

and Gilks, Richardson, and Spiegelhalter (1996).

Certain Markov chains (e.g. nearly-periodic chains) may have good asymptotic vari-

ance properties (i.e. the variance of π̂(h) above is relatively small as n →∞, when started

with X0 ∼ π(·)), but still have poor distributional convergence properties (so that L(Xi) is

far from π(·) unless i is very large). This is particularly relevant for antithetic chains, which

introduce negative correlations to reduce asymptotic variance, but at the expense of pos-

sibly introducing near-periodic behaviour which may slow the distributional convergence

(see e.g. Green and Han, 1992; Craiu and Meng, 2001).

It was argued in Rosenthal (2001) that, in such cases, it was worthwhile to instead

consider a time-sampled chain of the form Pµ =
∑

n µ{n}Pn, where µ is a probability

measure on the non-negative integers (e.g. perhaps µ{0} = µ{1} = 1/2). Then (Pµ)m =

Pµ∗m

, where µ∗m is the m-fold convolution of µ with itself (cf. Meyn and Tweedie, 1993,

Lemma 5.5.2(i)). Equivalently, (Pµ)m is generated by choosing Tm ∼ µ∗m independently
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of {Xn}, and considering XTm . For a very simple example, if X = {1, 2}, and P (1, 2) =

P (2, 1) = 1, then P is periodic, with stationary distribution π = Unif(X ). But if µ{0} =

µ{1} = 1/2, then Pµ(i, j) = 1/2 for all i, j ∈ X , so that Pµ coverges to stationarity in one

step, even though P is periodic and never converges. We consider Pµ herein.

2. Distributional convergence rates.

We now discuss distributional convergence. For a signed measure ν on X , we write

‖ν‖TV = supA⊆X |ν(A)| for total variation distance. We are interested in bounding dis-

tance to stationarity of the form ‖Pm(x, ·)− π(·)‖TV , as a function of m.

Now, Markov chain convergence rates can sometimes be proved by establishing mi-

norisation conditions of the form

P (x, A) ≥ ε ν(A) , x ∈ C, A ⊆ X ; (1)

here C ⊆ X is called a small set, and ε > 0, and ν(·) is some probability measure on

X . (We shall abbreviate this as P (x, ·) ≥ ε ν(·), x ∈ C.) Indeed, for uniformly ergodic

Markov chains, where we can take C = X , (1) is all that is required. Indeed, in that case

‖Pm(x, ·) − π(·)‖TV ≤ (1 − ε)m for all m ∈ N, as is well known. (This can be proved by

coupling; see e.g. Doeblin, 1938; Doob, 1953; Griffeath, 1975; Pitman, 1976; Nummelin,

1984; Lindvall, 1992; Meyn and Tweedie, 1993; Rosenthal, 1995a, 1995b.)

Now, if P is (say) a nearly periodic chain, then it is unlikely we will have P (x, ·) ≥ εν(·)

for all x ∈ X for any non-negligible ε. On the other hand, it is more likely that we will

have Pµ(x, ·) ≥ εν(·) for all x ∈ X , where Pµ represents (as before) the same Markov

chain but run for a random number of iterations. In that case, applying the above result

to Pµ instead of P , we see (cf. Rosenthal, 2001) that if Pµ(x, ·) ≥ εν(·) for all x ∈ X , then

‖(Pµ)m(x, ·)− π(·)‖TV ≡ ‖L(XTm |X0 = x)− π(·)‖TV ≤ (1− ε)m

for all x ∈ X , where Tm ∼ µ∗m is chosen independently of {Xn}.

Often, especially on infinite state spaces, the minorisation condition (1) will only be

satisfied on a subset C ⊆ X . In that case, suppose we also know that a drift condition

(P × P )h(x, y) ≤ h(x, y) / α , (x, y) 6∈ C × C (2)
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is satisfied, for some function h : X × X → [1,∞) and constant α > 1, where

(P × P )h(x, y) ≡
∫
X

∫
X

h(z, w) P (x, dz) P (y, dw) .

A slight modification of the argument and bound in Rosenthal (1995b), which follows as

a special case of Douc et al. (2002), and which also takes into account the ε-improvement

[i.e., replacing A by A− ε in (4)] of Roberts and Tweedie (1999), then yields the following.

Proposition 1. Consider a Markov chain X0, X1, X2, . . . on a state space X , with

transition probabilities P (x, ·) and stationary distribution π(·). Suppose there is C ⊆ X ,

h : X × X → [1,∞), a probability distribution ν(·) on X , α > 1, and ε > 0, such that (1)

and (2) hold. Suppose also that

sup
(x,y)∈C×C

(P × P )h(x, y) ≤ A . (3)

Then for any initial distribution L(X0), and any integer j ≤ k,

‖L(Xk)− π(·)‖TV ≤ (1− ε)j + α−k max[1, (α(A− ε))j−1]E[h(X0, Y0)] , (4)

with the expectation taken with respect to any joint law of X0 and Y0 provided their

marginal distributions are L(X0) and π(·) respectively.

Versions of Proposition 1 have been applied to a number MCMC examples in a variety

of ways (see e.g. Meyn and Tweedie, 1994; Rosenthal, 1995a, 1995b, 1996; Roberts and

Tweedie, 1999; Jones and Hobert, 2001, 2002; Cowles and Rosenthal, 1998; Cowles, 2001).

The resulting bounds are useful, although they are usually conservative.

Remark. If P (x, dy) ≥ h(x, y) dy, then we can achieve (1) by setting

ε =
∫
X

inf
x∈C

h(x, y) dy (5)

and ν(dy) = ε−1 infx∈C h(x, y) dy.
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Remark. As observed in Roberts and Rosenthal (2000), small-set conditions of the

form P (x, ·) ≥ εν(·) for all x ∈ C, can be replaced by pseudo-small conditions of the form

P (x, ·) ≥ ενxy(·) and P (y, ·) ≥ ενxy(·) for all x, y ∈ C, without affecting any bounds which

use coupling (which includes all the bounds considered here).

Finally, we note that in verifying (2), it is often simpler to verify a univariate drift

condition which bounds PV , where V : X → R. One can then construct a bivariate func-

tion h from V . The following result summarises various possibilities, following Rosenthal

(1995b,c), Cowles and Rosenthal (1998), and Roberts and Tweedie (1999). Parts (i) to

(iv) follow by direct computation, since if (x, y) 6∈ C × C and d∗ = infx6∈C V (x), then

either V (x) ≥ d∗ or V (y) ≥ d∗ (or both). Part (v) is easily seen by taking expectations

with respect to π of both sides of PV ≤ λV + b (cf. Meyn and Tweedie, 1993, Proposition

4.3(i)).

Proposition 2. Consider a Markov chain on a state space X , with transition probabilities

P (x, ·). Let V : X → R, let C ⊆ X , let 1C be the indicator function of C, let d∗ =

infx6∈C V (x), let d∗ = supx∈C V (x), and let M > 0. (Typically M = 1, C = {x ∈

X ; V (x) ≤ d}, and d∗ = d∗ = d.)

(i) If PV (x) ≤ λV (x) + b for all x ∈ X , where V ≥ 0, then (2) and (3) are satisfied with

h(x, y) = 1 + MV (x) + MV (y), α−1 = λ + 1+2Mb−λ
1+Md∗

, and A = 1 + 2M(λd∗ + b).

(ii) If PV (x) ≤ λV (x) + b for all x ∈ X , where V ≥ 1, then (2) and (3) are satisfied

with h(x, y) = (M/2)(V (x) + V (y)) + (1 − M), α−1 = λ + Mb+(1−λ)(1−M)
(M/2)(d∗+1)+(1−M) , and

A = M(λd∗ + b) + (1−M).

(iii) If PV (x) ≤ λV (x) + b1C(x) for all x ∈ X , where V ≥ 0, then (2) and (3) are satisfied

with h(x, y) = 1 + MV (x) + MV (y), α−1 = λ + 1+Mb−λ
1+Md∗

, and A = 1 + 2M(λd∗ + b).

(iv) If PV (x) ≤ λV (x) + b1C(x) for all x ∈ X , where V ≥ 1, then (2) and (3) are satisfied

with h(x, y) = (M/2)(V (x) + V (y)) + (1 − M), α−1 = λ + (M/2)b+(1−λ)(1−M)
(M/2)(d∗+1)+(1−M) , and

A = M(λd∗ + b) + (1−M).

(v) Furthermore, under any of (i) to (iv), we have Eπ[V (Y0)] ≤ b
1−λ , where the expectation

is taken with respect to Y0 ∼ π(·). Hence, Eπ[h(x, Y0)] ≤ 1 + MV (x) + Mb
1−λ under (i)

or (iii), and Eπ[h(x, Y0)] ≤ (M/2)(V (x) + b
1−λ ) + (1−M) under (ii) or (iv).
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3. Application to time-sampled chains.

Suppose now that we only have Pµ(x, ·) ≥ εν(·) for all x ∈ C, where C ⊆ X , for some

probability distribution µ on the non-negative integers. (This means that C is petite for

P in the language of Meyn and Tweedie, 1993; if P is aperiodic then this implies that C

is also small for P , but without any control over the corresponding values of k0 and ε.)

Suppose also that (2) holds for P . That is, suppose we have a drift condition for P , but a

minorisation condition for Pµ. How can we obtain convergence bounds in that case?

One method is to convert the drift condition for P to one for Pµ, as follows.

Proposition 3. Consider a Markov chain X0, X1, X2, . . . on a state space X , with

transition probabilities P (x, ·).

(i) Suppose PV (x) ≤ φ(V (x)) for all x ∈ X , where φ : [1,∞) → [1,∞) is non-decreasing

and (weakly) concave. Then

PnV (x) ≤ φ(φ(. . . φ(V (x)) . . .)) ≡ φn(V (x)) ,

and

PµV (x) ≤
∑

n

µ{n}φn(V (x)) .

(ii) In the special case φ(t) = λt + b with λ < 1, then PµV ≤ λµV + bµ, where

λµ = Rµ(λ) ; bµ = b

(
1−Rµ(λ)

1− λ

)
<

b

1− λ
;

here Rµ(s) = Eµ[sZ ] =
∑

n µ{n}sn is the probability generating function of µ.

Proof. Part (i) follows by induction and Jensen’s inequality, since for n = 1 it is

trivial, and assuming it true for n, then Pn+1V = P
(
PnV

)
≤ P

(
φn ◦ V

)
≤ φn ◦ (PV ) ≤

φn ◦ (φ ◦ V ) = φn+1 ◦ V . For part (ii), we compute that if φ(t) = λt + b, then

φn(t) = λnt + (
n−1∑
i=0

λi)b = λnt + b

(
1− λn

1− λ

)
.

Hence,

PµV (x) ≤
∑

n

µ{n}φn(V (x)) =
∑

n

µ{n}
(

λnV (x) + b

(
1− λn

1− λ

))
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= Rµ(λ)V (x) + b

(
1−Rµ(λ)

1− λ

)
.

That is, to replace P by Pµ, we must replace λ by λµ = Rµ(λ), and must replace b

by bµ = b
(

1−Rµ(λ)
1−λ

)
. Some special cases are worth noting:

(a) If µ{1} = 1, then λµ = λ and bµ = b, as they must.

(b) If µ{k0} = 1, then λµ = λk0 and bµ = b
(

1−λk0

1−λ

)
.

(c) If µ{0, 1, 2, . . . , k0 − 1} = 0, then λµ ≤ λk0 .

Combining Proposition 3 part (ii) with Proposition 1 applied to Pµ, and with Propo-

sition 2 parts (i) and (ii) and (v) (with M = 1, for simplicity), we obtain the following.

Theorem 4. Consider a Markov chain X0, X1, X2, . . . on a state space X , with transition

probabilities P (x, ·) and stationary distribution π(·). Suppose PV (x) ≤ λV (x) + b where

λ < 1 and V : X → [0,∞). Suppose also that Pµ(x, ·) ≥ εν(·) for all x ∈ X such that

V (x) ≤ d. Then for any integer j ≤ k,

‖L(XTk
)− π(·)‖TV ≤ (1− ε)j + α−k

µ max[1, (αµ(Aµ − ε))j−1] (1 +
b

1− λ
+ E[V (X0)]) ,

where Tk ∼ µ∗k is chosen independently of {Xn}, and where

α−1
µ = λµ +

1− λµ + 2bµ

d + 1
= Rµ(λ) +

1−Rµ(λ) + 2b
(

1−Rµ(λ)
1−λ

)
d + 1

,

and

Aµ = sup
x,y∈C

(Pµ × Pµ)(1 + V (y) + V (x)) ≤ 1 + 2(λµd + bµ) .

If V ≥ 1, the value of α−1
µ can be decreased slightly to α−1

µ = λµ + 2bµ

d+1 .

Another approach is to try to modify the proofs in Rosenthal (1995b) and Douc et al.

(2002), to take into account jumping a random number ∼ µ of iterations at each attempted

regeneration, instead of just 1 iteration (or just k0 iterations). The following theorem is

proved in Section 5.
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Theorem 5. Consider a Markov chain X0, X1, X2, . . . on a state space X , with transition

probabilities P (x, ·) and stationary distribution π(·). Suppose (P ×P )h(x, y) ≤ h(x, y) / α

for (x, y) 6∈ C×C, where α > 1 and h : X ×X → [1,∞). Suppose also that Pµ(x, ·) ≥ εν(·)

for all x ∈ C. Then for any non-negative integers j and m,

‖L(Xm+Tj
)− π(·)‖TV ≤ (1− ε)j + α−m−1Aj−1

µ Eπ[h(X0, Y0)] ,

where Tj ∼ µ∗j is chosen independently of {Xn}, where the expectation is taken with

respect to L(X0) and Y0 ∼ π(·), and where Aµ = supx,y∈C(Pµ × Pµ)h(x, y).

We note that in Theorem 5, unlike Theorem 4, we can verify the drift condition

(P × P )h(x, y) ≤ h(x, y) / α by any of the methods of Proposition 2.

If µ{1} = 1, then m + Tj = m + j, so the bound of Theorem 5 becomes

‖L(Xm+j)− π(·)‖TV ≤ (1− ε)j + α−m−1Aj−1E[h(X0, X
′′
0 )] .

which is similar to (in fact a slight improvement of) Theorem 12 of Rosenthal (1995b). If

µ{k0} = 1, where k0 ∈ N, then k = m+Tj = m+ k0j, and Aµ = Ak0 ≡ supX∈C P k0V (x),

so the bound of Theorem 5 becomes

‖L(Xm+k0j)− π(·)‖TV ≤ (1− ε)j + α−m−1Aj−1
k0

E[h(X0, X
′′
0 )] ,

which is similar to (in fact a slight improvement of) Theorem 5 of Rosenthal (1995b).

Remark. Another way of obtaining convergence bounds for near-periodic chains is

through the use of shift-coupling (Aldous and Thorisson, 1993; Roberts and Rosenthal,

1997), whereby the minorisation condition holds for the original chain P throughout C,

but the two chain copies do not need to regenerate at the same time. However, this

approach bound only convergence of full ergodic averages 1
n

∑n
i=1 P i(x, ·) of distributions.

Furthermore it leads to bounds which decrease just linearly (rather than exponentially) in

the number of iterations, so that more iterations will always be required to get within ε of

stationarity for sufficiently small ε > 0. In addition, in the examples below we typically

have a minorisation condition for Pµ but not for P , making shift-coupling difficult to apply.

7



Hence, we conclude that such shift-coupling bounds are both weaker and more difficult to

apply than the bounds herein.

4. Examples.

We now present some examples to which we apply the above theory.

Example 1. A small set in many pieces.

Suppose now that the state space X contains disjoint subsets C1, C2, . . . , CD such that

P (x, ·) ≥ ε0ν(·) for all x ∈ CD, and P (x,Ci+1) ≥ δi for all x ∈ Ci for 1 ≤ i ≤ D − 1, for

some D ≥ 2.

Let µ be uniform on {1, 2, . . . , D}. Then we see by inspection that the union
⋃

i Ci is

small for Pµ, with

Pµ(x, ·) ≥ 1
D

δ1 . . . δD−1ε0 ν(·) ≡ ε ν(·) ,

where ε = 1
D δ1 . . . δD−1ε0. (Such considerations generalise the notion of transfer condition

discussed in Roberts and Rosenthal, 1997, Theorem 6.)

Suppose also that PV ≤ λV + b1C , where V : X → [1,∞), and where C =
⋃

i Ci =

{x ∈ X ; V (x) ≤ d}. Then the bounds of Theorem 4 and Theorem 5 can be applied.

We compute numerically with D = 20, ε = 0.3, δi = 0.8 for all i, λ = 0.9, b = 10,

and d = 200. For Theorem 4, we compute using Proposition 3 that λµ = 0.395291 and

bµ = 60.4709. Then from Proposition 2, α−1
µ = λµ + 2bµ

d+1 = 0.797091, and Aµ = λµd+bµ =

179.058. The bound of Theorem 4 then becomes

‖L(XTk
)− π(·)‖TV ≤ (0.996541)j + 101(3.0383)j−1(20.5523)k ,

which is equal to 0.00782318 < 0.01 if j = 1, 400 and k = 34, 000. Since µ has mean 10.5,

this requires about (10.5)k = 357, 000 iterations.

For Theorem 5, we see from Proposition 2 that α−1 = λ + b
d+1 = 0.933223, with Aµ

as above. The bound of Theorem 4 then becomes

‖L(Xm+Tj
)− π(·)‖TV ≤ (0.996541)j + 101(179.058)j−1(0.933223)1+m ,

which is equal to 0.00782318 < 0.01 if j = 1, 400 and m = 106, 000. This requires about

m + (10.5)j = 120, 700 iterations.
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We thus see that each of Theorem 4 and Theorem 5 provide rigorous bounds on

convergence after a randomised number of iterations. Each of the bounds requires quite

a large number of iterations to converge. However, the bound of Theorem 4 requires

over 350, 000 iterations while the bound of Theorem 5 requires about 120, 000 iterations.

Hence, for this example, the bound of Theorem 5 is nearly three times stronger than that

of Theorem 4.

We note that in this example, the information available does not preclude the pos-

sibility that the original chain is, say, periodic, in which case it would not converge in

distribution at all. Hence, without further information, minorisation and drift conditions

for the original chain P (as opposed to Pµ) cannot be used to establish convergence rates.

Remark. In this example, we have only limited information available about the chain

(the minorisation, transfer, and drift conditions). In fact, it is even possible for this chain

to be reversible. Nevertheless, given the information we have available, the choice of µ

being uniform on {1, 2, . . . , D} was preferred. (Similar comments apply to Example 3

below.) It is an open question whether, given complete information about a reversible

chain, it would ever be preferred to have µ concentrated on more than two points.

Example 2. An antithetic Metropolis algorithm.

Let X = R, let γ > 1, let a > 0, and let π(dx) ∝ f(x) dx where the density f is

defined by

f(x) = e−a|x−sign(x)γ| , x ∈ R ,

where sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0. The density of f is thus a

bimodal distribution with modes at ±γ, which represents the continuous merging of two

double-exponential densities.

We shall consider running a Metropolis algorithm for π(·). One possible proposal

distribution is Unif[x−1, x+1]; however this would take a very long time to move between

the two modes. Instead, we shall use the proposal distribution given by Q(x, ·) = Unif[−x−

1,−x + 1], to do faster mode-hopping. That is, Q(x, dy) = q(x, y)dy where q(x, y) =
1
2 I(|y + x| ≤ 1). (This proposal is “antithetic” in the sense that if X is random and

Y ∼ Q(X, ·), then X and Y will be negatively correlated.)
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Clearly, this Metropolis algorithm will not be uniformly ergodic. Indeed, we always

have
∣∣|Xn+1| − |Xn|

∣∣ ≤ 1, while X is unbounded, so clearly {Xn} cannot converge from

everywhere in X in a fixed number of iterations. We thus consider applying Theorems 4

and 5.

We let V (x) = f(x)−1/2 = ea|x−sign(x)γ|/2 (so V ≥ 1), and let C = {x ∈ X ; |x −

sign(x)γ| ≤ 1} = {x ∈ X ; V (x) ≤ ea/2} (so d = ea/2). We then see (using symmetry) that

for x 6∈ C,

PV (x) / V (x) =
1
2

∫ 1

−1

min
[
1, e−az

]
eaz/2 dz + r (6)

where r = 1
2

∫ 1

0
(1− e−az) dz is the rejection probability from x.

Also for x ∈ C, the quantity PV (x) − λV (x) is maximised at x = ±γ. Hence,

PV ≤ λV + b if

b = PV (0)− λV (0) =
∫ 1

0

eaz/2e−azdz +
∫ 1

0

(1− e−az)dz − λ .

We next turn to the minorisation condition. Now, since C consists of two intervals,

one near γ and one near −γ, and γ > 1, there is clearly no overlap at all in {P (x, ·)}x∈C .

Even {P k0(x, ·)}x∈C will have very little overlap unless k0 is extremely large. Furthermore,

if µ{0} = µ{1} = 1
2 , then {Pµ(x, ·)}x∈C = {P (x, ·)}x∈C will again have no overlap at all.

On the other hand, if µ{2} = µ{3} = 1
2 , then {Pµ(x, ·)}x∈C will have substantial

overlap. Indeed, let C+ = {x ∈ X ; x > 0} and C− = {x ∈ X ; x < 0}. Then for x ∈ C+,

we will always have P (x, [−γ− 1
2 , −γ+ 1

2 ]) ≥ 1/4. Hence, P 2(x, ·) will always have density

at least 1/8 throughout the interval [γ− 1
2 , γ + 1

2 ]. Furthermore the acceptance probability

at the point −γ + z will be at least e−a|z|. Hence, P 2(x, dw) ≥ 1
4κ dw for x ∈ C+ and

w ∈ [γ− 1
2 , γ + 1

2 ], where κ ≡ 1
2

∫ 1/2

−1/2
e−a|z| dz =

∫ 1/2

0
e−az dz. Iterating this argument, we

see that P 3(x, dw) ≥ 1
4κ2dw for x ∈ C+ and w ∈ [γ− 1

2 , γ + 1
2 ]. We conclude by symmetry

that with µ{2} = µ{3} = 1
2 , Pµ(x, dw) ≥ 1

4κ2dw for x ∈ C and either |w − γ| ≤ 1
2 or

|w + γ| ≤ 1
2 . Hence, by (5), we have Pµ(x, ·) ≥ ε ν(·) for all x ∈ C, with

ε = 2(1/4)κ2 = κ2/2 =
1
2

(
1
2

∫ 1/2

−1/2

e−a|z| dz

)2

.

We compute the bounds of Theorem 4 and Theorem 5 numerically with a = 10. The

above arguments give d = 148.413, λ = 0.648655, b = 0.450002, κ = 0.0993262, and
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ε = 0.00493285. In the context of Theorem 4, we then have λµ = 0.346838, bµ = 0.836568,

α−1
µ = 0.358036, and Aµ = 52.3119. Setting j = 1, 000 and k = 5, 000, the bound of

Theorem 4 gives

‖L(XTk
)− π(·)‖TV ≤ 0.00711853 ,

where E[Tk] = 2.5 k = 12, 500. On the other hand, in the context of Theorem 5 we have

α−1 = 0.654678. Setting j = 1, 000 and m = 10, 000, the bound of Theorem 5 gives

‖L(Xm+Tj )− π(·)‖TV ≤ 0.00711853 ,

where E[m + Tj ] = m + 2.5 j = 12, 500.

Hence, Theorem 4 and Theorem 5 give very similar convergence bounds for this chain.

Each of them provides a result which is conservative, but not totally infeasible (i.e. it is

quite possible to simulate XTk
or Xm+Tj

on a computer). Furthermore, each of the bounds

requires doing a random number of iterations of the original chain, to reasonably bound

the convergence.

We note that in this example, the antithetic Metropolis chain P itself must converge to

π(·) by irreducibility and aperiodicity. Hence, in principle minorisation and drift conditions

for P (as opposed to Pµ) could be used to establish convergence rates directly. However,

if (say) a and γ are fairly large, then the convergence of P will be infeasibly slow, and any

corresponding convergence rate bounds would necessarily be huge.

Example 3. Random Walk on a Weighted Tree.

Consider an infinite tree, defined as follows. There is a single root node x1,1. This

node has C(x1,1) = N2 ≥ 1 children, labeled x2,1, . . . , x2,N2 . Then x2,i has C(x2,i) ≥ 0

children (1 ≤ i ≤ N2), for a total of N3 =
∑N2

i=1 C(x2,i) nodes x3,1, . . . , x3,N3 . We continue

in the same manner. Thus, the jth row of the tree has Nj =
∑Nj−1

i=1 C(xj−1,i) nodes (where

N1 = 1). The set of all nodes is thus X = {xi,j : i ≥ 1, 1 ≤ j ≤ Ni}. We assume that

Nj ≥ 1 for j = 1, 2, 3, . . ., so |X | = ∞. To make X into a weighted undirected tree, we add

an edge between each node x ∈ X \ {x1,1} and its parent, of weight W (x) > 0.

For x ∈ X , we let D(x) > 0 equal the sum of the weights of all edges touching x, and

let row(x) be the row of x (so that row(xi,j) = i).
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We then define a random walk X0, X1, . . . on this weighted tree in the usual fashion.

That is, for x, y ∈ X , P (Xn+1 = y |Xn = x) is equal to the weight of the edge (if any)

between x and y, divided by D(x). This walk changes its row by one each time, and hence

is clearly periodic with period two, so it does not converge in distribution in any fixed

number of steps.

We regard the tree (given by the parameters {C(x)}x∈X and {W (x)}x∈X ) as fixed.

We further assume that the weights W (xi,j) go to 0 as i → ∞, quickly enough that

W ∗ ≡
∑

x∈X W (x) < ∞. In this case, the random walk has a stationary distribution,

given by π(x) = D(x) / 2W ∗; in fact the walk is reversible with respect to π.

To study the convergence of this random walk to its stationary distribution, we also

make assumptions about the probability of the walk moving up. We assume that

W (x)
D(x)

≥ δ > 0 , x ∈ X \ {x1,1} ,

and for some K ≥ 2,

W (xi,j)
D(xi,j)

≥ p > 1/2 , i > K, 1 ≤ j ≤ Ni . (7)

The meaning of (7) is that, beyond row K of the tree, the random walk always has

probability ≥ p of moving up (towards the root node) rather than down.

To proceed, let β = 2− (2p)−1, so β > 1. Define V : X → [1,∞) by V (x) = βrow(x)−1.

Let C = {x ∈ X ; row(x) ≤ K + J} for some J ≥ 0. Then for i > K, since (1 + z)−1 ≤

1− z + z2 for z ≥ 1, we have

PV (xi,j) ≤ pβi−1 + (1− p)βi+1 = βi
[
pβ−1 + (1− p)β

]
≤ βi

[
p(2− β + (β − 1)2) + (1− p)β

]
= βi

[
2− p− (4p)−1

]
≡ λ V (xi,j) ,

where λ = 2− p− (4p)−1 < 1.

We now let h(x, y) = 1 + V (x) + V (y). Then for row(x), row(y) ≥ K + 1,

(P × P )h(x, y) ≤ 1 + λV (x) + λV (y) ≤ h(x, y)
[
λ +

1− λ

1 + 2βK

]
≡ h(x, y)λ′ .

For row(x) ≥ K + J + 1 and row(y) ≤ K, PV (y) ≤ (1− δ)βV (y) + δβ−1V (y), so

(P × P )h(x, y)
h(x, y)

≤ 1 + λV (x) + [(1− δ)β + δβ−1]V (y)
1 + V (x) + V (y)

.
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Now, if (1− δ)β + δβ−1 ≤ 1+λV (x)
1+V (x) , then this is

≤ 1 + λV (x)
1 + V (x)

≤ 1 + λβK+J

1 + βK+J
≡ λ′′ < 1 .

If (1− δ)β + δβ−1 ≥ 1+λV (x)
1+V (x) , then this is

≤ 1 + λV (x) + [(1− δ)β + δβ−1]β−J−1V (x)
1 + V (x) + β−J−1V (x)

≤ 1 + λβK+J + [(1− δ)β + δβ−1]βK−1

1 + βK+J + βK−1
≡ λ′′′ .

We will often (but not always) have λ′′′ < 1. In this case, by the above, (2) is satisfied

with h(x, y) = 1 + V (x) + V (y), C = {xi,j ∈ X ; 1 ≤ i ≤ K}, and α−1 = max(λ′, λ′′, λ′′′).

As for a minorisation condition, we let ν({x1,1}) = 1. Then for xi,j ∈ C, there

is probability ≥ δi−1 that it will move up on each of its first i − 1 jumps. Hence, if

µ{0} = µ{1} = . . . = µ{K + J − 1} = 1/(K + J − 1), then we have

Pµ(x, ·) ≥ 1
K + J − 1

δK+J−1ν(·) ≡ ε ν(·) , x ∈ C .

For a crude bound on Aµ, we note that for x ∈ C, clearly P iV (x) ≤ βK+J+i−1, so

PµV (x) = (K + J − 1)−1
∑K−1

i=0 P iV (x) ≤ (K + J − 1)−1
∑K−1

i=0 βK+J+i−1 = (K + J −

1)−1 β2K+J−1−βK+J−1

β−1 , so Aµ ≤ 1 + 2(K + J − 1)−1 β2K+J−1−βK+J−1

β−1 .

Finally, we note from the above that clearly PV ≤ λV + b1C with λ as above and

b = βK+J . Hence, from Proposition 2 part (v), we have Eπ[V (Y0)] ≤ βK+J/(1 − λ), so

that Eπ[h(x, Y0)] ≤ 1 + βrow(x)−1 + βK+J/(1− λ).

We are now able to apply Theorem 5, to conclude that if Tj ∼ µ∗j is chosen indepen-

dently of {Xn}, then with α−1, ε, and β as above,

‖L(Xm+Tj )− π(·)‖TV ≤ (1− ε)j+

α−m−1
(
1 + 2(K + J − 1)−1 β2K+J−1 − βK+J−1

β − 1

)j−1 (
1 + βrow(X0)−1 + βK+J/(1− λ)

)
.

As a specific numerical illustration, if p = 4/5 and δ = 1/2, with K = 3 and J = 4,

then if row(X0) = 1 and j = 1, 800 and m = 43, 000, the bound is equal to 0.00915354 <
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0.01. Since the mean of µ is equal to (K + J − 1)/2 = 3, this requires approximately

43, 000 + 1, 800(3) = 48, 400 iterations. On the other hand, if p = 3/4 and δ = 2/5, with

K = 5 and J = 2, then if row(X0) = 1 and j = 7, 000 and m = 275, 000 the bound is equal

to 0.00839349 < 0.01. Here the mean of µ is again (K + J − 1)/2 = 3, so this requires

approximately 275, 000 + 7, 000(3) = 296, 000 iterations. These bounds are obviously very

conservative, and can doubtless be improved by a more problem-specific analysis. On the

other hand, the bounds still provide numbers of iterations which can be done efficiently

on a computer, so they may still be useful in providing guaranteed accuracy when doing

simulations.

We note that in this example, the original chain P is periodic by construction. Hence,

minorisation and drift conditions for the original chain P (as opposed to Pµ) cannot be

used to establish convergence rates.

5. Proof of Theorem 5.

Let {β1, β2, . . . , I1, I2, . . .} be a collection of independent random variables, where

βi ∼ µ(·), and P(Ii = 1) = 1 − P(Ii = 0) = ε. Let U0 = 0, and Uk = β1 + . . . + βk for

1 ≤ k ≤ j. Then Uj ∼ µ∗j , so L(Uj) = L(Tj) and L(Xm+Uj
) = L(Xm+Tj

).

We shall define three processes {Xt}
m+Uj

t=0 , {X ′
t}

m+j
t=0 , and {X ′′

t }
m+j
t=0 , each on X . The

idea is that X will start at X0 and follow P , while X ′ and X ′′ will start at X0 ∼ L(X0)

and X ′′
0 ∼ π(·) respectively, but will each follow a “collapsed time scale” where jumps of

time βi for X will correspond to jumps of time 1 for X ′ and X ′′. In particular, X is just

a time change of X ′.

We shall also define auxiliary variables {dt, St, Nt}m+j
t=0 , where: dt is the indicator

function of whether or not X ′ and X ′′ have coupled by time t; St represents the time

index for X which corresponds to the time index t for X ′ and X ′′; Nt represents the

number of times X ′ and X ′′ have attempted to couple by time t.

Formally, we begin by setting X ′
0 = X0 where L(X0) is the given initial distribution,

and choosing X ′′
0 ∼ π(·), with the pair (X0, X

′′
0 ) following any joint law (e.g. independent).

We also set d0 = S0 = N0 = 0. Then iteratively for n ≥ 0, given X ′
n, X ′′

n , dn, Sn, Nn, XSn
:

1. If dn = 1, then we must have X ′
n = X ′′

n = XSn
≡ x, in which case
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a. If (X ′
n, X ′′

n) 6∈ C × C or Nn = j, then set dn+1 = 1, and Sn+1 = Sn + 1, and

Nn+1 = Nn. Then choose X ′
n+1 = X ′′

n+1 = XSn+1 ∼ P (x, ·),

b. If (X ′
n, X ′′

n) ∈ C × C, and Nn < j, then set dn+1 = 1, and Nn+1 = Nn + 1,

and Sn+1 = Sn + βNn+1 . Then choose X ′
n+1 = X ′′

n+1 = XSn+1 ∼ P βNn+1 (x, ·),

Then fill in XSn+1, XSn+2, . . . , XSn+1−1 according to the transition kernel P ,

conditional on the values of Sn, Sn+1, XSn , and XSn+1 .

2. If dn = 0, then

a. If (X ′
n, X ′′

n) 6∈ C × C or Nn = j, then set dn+1 = 0, and Sn+1 = Sn + 1,

and Nn+1 = Nn. Then independently choose X ′
n+1 = XSn+1 ∼ P (X ′

n, ·), and

X ′′
n+1 ∼ P (X ′′

n , ·).

b. If (X ′
n, X ′′

n) ∈ C×C and Nn < j then set dn+1 = In+1, and Nn+1 = Nn +1. and

Sn+1 = Sn + βNn+1 . Then

i. If In+1 = 1, choose X ′
n+1 = X ′′

n+1 = XSn+1 ∼ ν(·),

ii. If In+1 = 0, then independently choose

XSn+1 = X ′
n+1 ∼ (1− ε−1)(P βNn+1 (X ′

n, ·)− εν(·)) ,

and

X ′′
n+1 ∼ (1− ε−1)(P βNn+1 (X ′′

n , ·)− εν(·)) .

Under either i or ii, then fill in XSn+1, XSn+2, . . . , XSn+1−1 according to the

transition kernel P , conditional on the values of Sn, Sn+1, XSn , and XSn+1 .

[To better understand the above construction, we note that steps (a) involve updating

each of the three processes according to P , while steps (b) involve updating X according

to P repeated Sn times, while updating (X ′, X ′′) according to Pµ (and attempting to

couple them if they are not already coupled). Furthermore, step 2.b.i. involves the actual

coupling, while step 2.b.ii. involves updating the processes from their “residual” kernels so

that overall they are updated according to their correct transition kernels. Steps 1. involve

simply maintaining the coupling (i.e. X ′
n = X ′′

n) once it has already occurred.]

This construction is designed so that {Xt} marginally follows its correct transition

15



kernel P (and, in particular, is marginally independent of the {βi}). Also 0 ≤ Nk ≤ j for

all k. Furthermore, XSk
= X ′

k for all k, and Sk = (k −Nk) + UNk
for all k.

Lemma 4. On the event {Nm+j = j}, we have Xm+Uj
= X ′

m+j .

Proof. It follows from the above observations that if Nj+m = j, then Sm+j =

(m + j − j) + Uj = m + Uj , so that Xm+Uj
= XSm+j

= X ′
m+j .

Now, since X ′′
0 ∼ π(·), we have by stationarity that X ′′

k ∼ π(·), for all k. Hence, using

the coupling inequality (e.g. Lindvall, 1992; Rosenthal, 1995a,b), we see that

‖L(Xm+Tj )− π(·)‖TV = ‖L(Xm+Uj )− L(X ′′
m+j)‖TV ≤ P (Xm+Uj 6= X ′′

m+j)

= P [Xm+Uj 6= X ′′
m+j , Nk ≥ j] + P [Xm+Uj 6= X ′′

m+j , Nk ≤ j − 1] . (8)

By Lemma 4,

P [Xm+Uj
6= X ′′

m+j , Nk ≥ j] = P [X ′
m+j 6= X ′′

m+j , Nk ≥ j]

≤ P[I1 = I2 = . . . = Ij = 0] = (1− ε)j , (9)

which bounds the first term in (8).

Also,

P [Xm+Uj 6= X ′′
m+j , Nm+j ≤ j − 1] ≤ P [Nm+j ≤ j − 1] . (10)

We bound this as in Rosenthal (1995b) by setting

Mk = αk(αAµ)−Nkh(X ′
k, X ′′

k ) .

Then using (2), Mk is easily seen (cf. Rosenthal, 1995b; Douc et al., 2001) to be a

supermartingale, with E[Mk+1 |X ′
k, X ′′

k ,Mk = m] ≤ m (consider separately the cases

(X ′
k, X ′′

k ) ∈ C × C and (X ′
k, X ′′

k ) 6∈ C × C). Hence, since αAµ > 1,

P [Nm+j ≤ j − 1] = P [(αAµ)−Nm+j ≥ (αAµ)−(j−1)]
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≤ (αAµ)j−1E[(αAµ)−Nm+j ] (by Markov’s inequality)

≤ (αAµ)j−1E[(αAµ)−Nm+j h(Xm+j , X
′
m+j)] (since h ≥ 1)

= (αAµ)j−1E[α−(m+j)Mm+j ]

≤ (αAµ)j−1α−m−jE[M0] (since {Mk} is supermartingale)

= α−m−j(αAµ)j−1E[h(X ′
0, X

′′
0 )] . (11)

The result now follows by plugging (9) and (11) into (8).

Remark. If we could replace (10) by

P [Xm+Uj
6= X ′′

m+j , Nm+j < j] ≤ P [dm+j = 0, Nm+j < j] , (12)

then we could replace αAµ by max[1, α(Aµ−ε)] in the conclusion of the theorem, thus very

slightly improving the result. Indeed, if βi ≡ 1 then we can do precisely this (Douc et al.,

2002), leading to Proposition 4 above. However, (12) is not true for general βi. Indeed,

in general if Nm+j < j then we will not have Xm+Uj = X ′
m+j . Hence, we might have

X ′
m+j = X ′′

m+j and dm+j = 1, even though Xm+Uj 6= X ′′
m+j . One can attempt to modify

the construction of X ′ and X ′′ so that they sometimes jump according to Pµ even when

they are not in C ×C, in an effort to force X ′
m+j = Xm+Uj

no matter what; however, this

then invalidates e.g. the drift condition (2), (One can even let X ′ and X ′′ jump according

to Pµ when not in C × C only if they have already coupled; but this still does not take

into account cases where e.g. they couple just before time m + j even though Nj+m is far

less than j.) Hence, we are unable to achieve the ε-improvement (12) when dealing with

random βi values.
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