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Abstract
We consider piecewise-deterministic Markov processes such as the Bouncy Particle sam-
pler, on target densities with polynomial tails. Using direct drift condition methods, we 
provide bounds on the polynomial order of the processes’ convergence rate to stationary, 
on both one-dimensional and high-dimensional state spaces, in both total variation distance 
and f-norm.
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1  Introduction

Markov chain Monte Carlo (MCMC) algorithms have become an indispensable part of 
statistical computation; see e.g. Brooks et  al. (2011) and the many references therein. 
Piecewise-deterministic Markov processes (PDMP), such as the Bouncy Particle sam-
pler (Bouchard-Côté et al. 2018) and the Zig-Zag algorithm (Bierkens et al. 2019), have 
emerged as a non-reversible alternative to traditional Metropolis-based MCMC. They are 
of great theoretical interest and also some practical relevance; see e.g. Bierkens (2021) 
and the references therein. An important question about PDMP is their rate of conver-
gence, i.e. how quickly they converge to their target stationary distribution. For suffi-
ciently lightly-tailed targets, geometric ergodicity has been established under certain 
conditions (Deligiannidis et al. 2019). However, if the target distribution has tails which 
are heavier than exponential, then geometric ergodicity does not apply.
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In this paper, we instead focus on polynomial convergence rates of certain PDMP. That 
topic was previously approached using the concept of hypocoercivity in Andrieu et  al. 
(2021a, b), but here we proceed using direct drift condition methods. We specifically con-
sider the Bouncy Particle sampler (Bouchard-Côté et al. 2018), for a given target density � 
in �d . This PDMP has, at each time, a location x ∈ �d and a velocity v ∈ �d with |v| = 1 . 
It proceeds primarily by deterministically moving x through �d at the fixed velocity v. It 
also reflects v along � ’s contour lines at hazard rate �(x, v) =

[
−v (log�)�(x)

]+ . In addition, 
it refreshes at some specified hazard rate (which could depend on the current position x), 
at which point it replaces the velocity v by an independent draw from the uniform distribu-
tion Ψ on the unit sphere in �d . This process is known (Bouchard-Côté et al. 2018) to be 
irreducible with stationary density � , and to converge to � exponentially quickly for suf-
ficiently light-tailed target densities �.

This paper examines the polynomial convergence rate of this PDMP to target densities � 
which are heavy-tailed. We first consider one-dimensional heavy-tailed targets (for which 
polynomial convergence rates of the Zig-Zag Process was also considered in Vasdekis and 
Roberts 2021). For targets with tails comparable to a t-distribution with r degrees of free-
dom, we derive sharp bounds on polynomial convergence (Theorem 4). In particular, we 
prove that the polynomial convergence order in total variation distance is precisely r, in 
the sense that limt→∞ ta ‖Pt(x, ⋅) − �(⋅)‖TV equals 0 for a < r and infinity for a > r . We 
also prove convergence in the V (1−�)p-norm (see Section 3) at polynomial order approach-
ing (1 − p)r , for any p ∈ [0, 1) . We then consider high-dimensional PDMP, and compute 
their infinitesimal generator applied to an appropriate drift function (Theorem 5). We spe-
cialise this generator computation to target densities with polynomial tails proportional to 
(1 + |x|2)−(r+d)∕2 (Corollary 7), and use this to derive specific bounds on their polynomial 
convergence rate (Theorem  8) in both total variation distance and f-norm. Our theorem 
shows that for r > (2𝜋 − 1)d , the process converges in total variation distance at polyno-
mial order approaching (r + d)

√
2�∕d − 1.

This paper is organised as follows. In Section  2, we present some computer simula-
tions to illustrate the convergence of PDMP to stationarity. In Section 3, we review general 
polynomial convergence rate bounds for continuous-time processes as in Fort and Roberts 
(2005), and present some corollaries adapting those results to our needs. In Section 4, we 
consider one-dimensional PDMP, and prove an exact characterisation (Theorem 4) of the 
polynomial convergence order in that case. In Section 5, we prove a general result (Theo-
rem  5) which derives the infinitesimal generator of PDMP acting on certain choices of 
drift function, which we then apply to target densities with polynomial tails (Corollary 7). 
In Section 6, we apply these results to derive specific polynomial rate bounds for high-
dimensional PDMP (Theorem 8). Finally, in Section 7, we present an auxiliary computa-
tion about expected values with respect to the refresh distribution Ψ , which is used in the 
proof of Theorem 8.

2 � Computer Simulations of the PDMP

We begin by performing some computer simulations. Suppose the state space X  is the 
one-dimensional real line � , with C1 target density �(x) . In this case, the Piecewise 
Deterministic Markov Process (PDMP) enlarges the state space to X × {−1, 1} , and 
expands � to �(x, v) = 1

2
�(x) for v ∈ {−1, 1} . It then proceeds by moving with fixed con-

stant velocity v, except reflecting from v to −v with hazard rate �(x, v) =
[
−v (log�)�(x)

]+ . 
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(We omit refreshes, i.e. take the refresh rate to be zero, since refreshes are not required in 
one dimension.)

Simulating this process requires that we identify the reflection times, which arise in 
continuous time according to the hazard rate �(x, v) . This could be approximated by 
advancing time in small discrete increments, but the errors in such approximations are dif-
ficult to control. Instead, we proceed as follows. Suppose the process is currently at some 
state (Xt,Vt) at time t ≥ 0 , and we wish to simulate the next T units of time. We first find 
some value M for which we must have �(Xs,Vs) ≤ M for all t ≤ s ≤ t + T .

Then, we simulate a Poisson process with constant rate M for the next T time units. We 
then use “Poisson thinning” to proceed through those times points in order, with accept-
ance probability �(x, v)

/
M , until the first one is accepted and hence the next reflection time 

is identified. At that point, we discard the remaining Poisson time points, and continue the 
simulation anew from the identified reflection time. In this way, the reflection times are 
simulated accurately, without any discretisation error. (The R script that we used for our 
simulations is available for inspection at: probability.ca/Rpoly.)

We first simulate this process where �(x) = (1 + x2)−3 (so, � is essentially a t-distribu-
tion with parameter r = 5 ). In this case, �(x, v) ∶=

[
−v (log�)�(x)

]+
=

(1+r)(xv)+

1+x2
 , which is 

maximised at M ∶= �(1, 1) = (1 + r)∕2 . (So, in this case �(x, v) has a constant upper bound 
M, but in general M might depend on Xt and Vt and T.) A typical run of this process is 
shown in Fig. 1, starting with X0 = 5 and V0 = +1 . We see that the process moves at con-
stant velocity ±1 , with reflections at appropriate random times to preserve stationarity.

To illustrate the convergence of this process Xt to its stationary distribution � , we con-
sider (inspired by total variation distance, see next section) the expected values of function-
als g ∶ X → � , specifically the difference between the expected value �[g(Xt)] at time t of 
our process, compared to the stationary expected value �(g) ∶= ��[g(X)] . By repeating the 
simulation a large number of times, we obtain a mean value and 95% confidence interval 
for �[g(Xt)] at various times  t, for three different functionals g1(x) = x , g2(x) = �x>0 , and 
g3(x) = x2 . In each case, we compare �[g(Xt)] to the corresponding stationary expectation 
�(g) (equal to 0 and 1/2 and 1/3, respectively), at various times t. The results are shown in 
Fig. 2. The mean value of each of the three functionals when running the process (blue) 
converges quickly to its stationary value (red). This provides confirmation that our PDMP 
process is indeed converging to the correct distribution. But how quickly?

Fig. 1   A typical piecewise-
deterministic Markov process 
(PDMP) run for the Student’s 
t-distribution � , starting with 
X
0
= 5 and V

0
= +1 , with reflec-

tions at random times to make � 
be stationary
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In fact, the convergence rate of this process is heavily affected by the tail behav-
iour of the target distribution �(x) . To illustrate this, consider a second exam-
ple where the target 𝜋̄(x) = e−x

2∕2 corresponds to a standard Gaussian distribution. 
Then the tails of �(x) are much heavier than those of 𝜋̄(x) . Its hazard rate is equal to 
𝜆̄(x, v) ∶=

[
−v (log 𝜋̄)�(x)

]+
= (xv)+ which grows much faster than �(x, v) above. Here 

M ∶= supt≤s≤t+T �(Xs,Vs) = |Xt| + T  , which depends on Xt . In particular, the process 
for 𝜋̄ will return to the origin much more quickly and consistently than for � , leading 
to much faster convergence. This is illustrated in Fig. 3, which shows ten runs of the 
process for 𝜋̄ (top) and for � (bottom) when started with X0 = 10 and V0 = +1 , with 
the � processes much more variable in their return times. The difference also arises in 
Fig. 4, which shows ten runs for each target, but this time started with X0 = 1000 and 
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Fig. 2   The mean value (blue) and 95% confidence interval (green dotted) for �[g(Xt)] at various times t, for 
the three different functionals g

1
(x) = x (top), g

2
(x) = �x>0 (middle), and g

3
(x) = x2 (bottom), compared to 

the corresponding stationary expectation (red), when running a PDMP for the Student’s t-distribution
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V0 = +1 , i.e. much farther out in the tails, with the � processes even more variable in 
their return times.

Due to the heavy polynomial tails of the Student’s t-distribution �(x) , the conver-
gence to � cannot be exponentially quick, i.e. “geometrically” ergodic. But it might 
still be polynomially ergodic. To investigate that question, we next to turn our attention 
to the theory of polynomial convergence rates of Markov processes.

3 � Polynomial Convergence Rates of Markov Processes

Quantitative convergence rates of discrete-time geometrically ergodic Markov chains have a 
long history, see e.g. Rosenthal (2002) and the many references therein. More recently, focus 
has turned to polynomial ergodicity, e.g. Fort and Moulines (2000) and Jarner and Roberts 
(2002). Most of these results are in discrete time, but Fort and Roberts (2005) yields the fol-
lowing continuous-time polynomial convergence bound. To state it, recall that if � and � are 
two probability distributions on X  , and f ∶ X → (0,∞) , then the f-norm distance between � 
and � is defined as

‖�(⋅) − �(⋅)‖f ∶= sup
g∶X→�

�g�≤f
���(g) − ��(g)� ,

Fig. 3   Ten PDMP runs for the 
Gaussian target 𝜋̄ (top) and for 
the Student’s t-distribution target 
� (bottom), started with X

0
= 10 

and V
0
= +1 ; the � (bottom) pro-

cesses are much more variable

0 5 10 15 20 25 30
−1

0
−5

0
5

10
15

t

Xt

0 5 10 15 20 25 30

−1
0

0
5

10
15

20

t

Xt



	 Methodology and Computing in Applied Probability            (2023) 25:6 

1 3

    6   Page 6 of 18

and the total variation distance between � and � is defined as

Let Pt(x,A) = �[Xt ∈ A |X0 = 0] be the time-t transition probabilities. Also, recall that 
a continuous-time Markov process {Xt} has an infinitesimal generator A which acts on 
appropriate functions f ∶ X → � by

(for background about generators see e.g. Ethier and Kurtz 1986). Then we have:

Proposition 1  Suppose a continuous-time Markov process on state space X ⊆ �d has sta-
tionary distribution � , and infinitesimal generator A , and there is � ∈ (0, 1) and c > 0 and 
b0 < ∞ and a closed petite set C ⊆ X  and a drift function V ≥ 1 with supx∈C V(x) < ∞ such 
that AV(x) ≤ −c (V(x))1−� + b0 �C(x) for all x ∈ X  . Then for any p ∈ [0, 1) and x ∈ X ,

‖�(⋅) − �(⋅)‖TV ∶= sup
g∶X→�

�g�≤1
���(g) − ��(g)� .

Af (x) ∶= lim
�↘0

�[ f (X�) |X0 = x] − f (x)

�

lim
t→∞

t(1−p)(1−�)∕� ‖Pt(x, ⋅) − �(⋅)‖V (1−�)p = 0 ,

Fig. 4   Ten PDMP runs for the 
Gaussian target 𝜋̄ (top) and 
for the Student’s t-distribution 
target � (bottom), started with 
X
0
= 1000 and V

0
= +1 ; the � 

(bottom) processes are again 
more variable
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i.e. the process converges to stationary in the V (1−�)p-norm at polynomial order (1 − p)(1 − �)∕� .  
In particular, setting p = 0,

i.e. ‖Pt(x, ⋅) − �(⋅)‖TV ≤ O(t−(1−�)∕�) , i.e. the process converges to stationarity in total vari-
ation distance at polynomial order (1 − �)∕�.

Proof  This result follows from Corollary 6 of Fort and Roberts (2005) upon setting their � = 1 
and c� = c and b = 0 , and using that t ≤ 1 + t . (Note that the “b” in their convergence equa-
tion is different from the “b” in their drift equation (8), which we here refer to as “ b0”.) ▪

To continue, recall that a function V ∶ �d → � is norm-like if lim
|x|→∞

V(x) = ∞ . Also, a 
subset C ⊆ X  is small if there are t0 > 0 and a non-zero �-finite measure � on X  such 
that Pt0 (x,A) ≥ �(A) for all measurable A ⊆ X  , or petite if that condition is replaced by 
∫ ∞

0
Pt(x,A) dt ≥ �(A) . Call a process compact-small if all compact sets are small; this 

holds for many processes (see e.g. Meyn and Tweedie 1993), and in particular it holds 
for Bouncy Particle samplers with refresh rates which are bounded below on sets which 
are compact in the extended state space (Deligiannidis et al. 2019, Lemma 2), or which 
are in just one dimension (cf. Bierkens et al. 2019), so it holds for all of our applications 
here. In terms of these various definitions, we have:

Corollary 2  Suppose a continuous-time compact-small Markov process on state space 
X ⊆ �d has stationary distribution � , and infinitesimal generator A , and there is � ∈ (0, 1) 
and c, c0 > 0 and Δ < ∞ and a continuous norm-like drift function V ≥ c0 > 0 such that 
AV  is bounded on compact sets and AV(x) ≤ −c (V(x))1−� for all x ∈ X  with V(x) ≥ Δ . 
Then, again, for any p ∈ [0, 1) and x ∈ X ,

Proof  First of all, by replacing V by V∕c0 and c by c∕c�
0
 if necessary, we can assume that 

c0 = 1 . Then, let C = {x ∈ X ∶ V(x) ≤ Δ} . This C is closed by continuity of V, and is 
bounded since V is norm-like, so C is compact. Hence, by the compact-small property, C is 
small, and hence also petite. Then b0 ∶= supx∈C AV(x) < ∞ since AV is bounded on com-
pact sets. This result now follows from Proposition 1, by noting that if AV(x) ≤ −c (V(x))1−� 
when V(x) ≥ Δ then AV(x) ≤ −c (V(x))1−� + b0 �C(x) for all x ∈ X  . ▪

Corollary 3  Suppose a continuous-time compact-small Markov process on state space 
X ⊆ �d has stationary distribution � , and infinitesimal generator A , and there is 𝛽 > 1 and 
c0, c1 > 0 and 𝛿 > 0 and a drift function V(x) ≥ max(c0, c1 |x|�) such that

Then for any p ∈ [0, 1) and x ∈ X ,

and in particular

lim
t→∞

t(1−�)∕� ‖Pt(x, ⋅) − �(⋅)‖TV = 0 ,

lim
t→∞

t(1−p)(1−�)∕� ‖Pt(x, ⋅) − �(⋅)‖V (1−�)p = 0 .

AV(x) ≤ −� |x|�−1 [1 + o(|x|)] , |x| → ∞ .

lim
t→∞

t(1−p)(�−1) ‖Pt(x, ⋅) − �(⋅)‖V (1−�)p = 0 ,
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Proof  Since V(x) ≥ c1 |x|� , it follows that |x| ≤ [V(x)∕c1]
1∕� , so for all large |x|,

where c = �

2
(c1)

1−(1∕�) . Hence, we can apply Corollary 2 with � = 1∕� ∈ (0, 1) . The result 
then follows since (1 − �)∕� = (1 −

1

�
)
/
(1∕�) = � − 1 . ▪

Remark  Although we focus here on the polynomial order of the convergence rates, using 
the above general polynomial bound results, it is also possible to use a similar approach to 
obtain actual quantitative (computable) bounds on the distance to stationarity of PDMP, 
similar in spirit to Rosenthal (2002) and the references therein; by using the related results 
of Fort and Moulines (2003).

4 � Convergence Rate in One Dimension

Suppose again that the state space X  is the one-dimensional real line � , with C1 target 
density �(x) . Again consider the algorithm which enlarges the state space to X × {−1, 1} , 
and expands � to �(x, v) = 1

2
�(x) for v ∈ {−1, 1} , and moves with fixed constant veloc-

ity v, except reflecting from v to −v with hazard rate �(x, v) =
[
−v (log�)�(x)

]+ , and with 
zero refresh rate.

We know that if � has heavy tails, then this process cannot converge exponentially 
quickly. However, it might still converge polynomially quickly. Polynomial convergence 
rates for the related Zig-Zag process on one-dimensional heavy-tailed targets have been 
studied in Vasdekis and Roberts (2021). In this section, we present a result which gives 
precise polynomial convergence rates for the Bouncy Particle sampler, including a gen-
eralisation to f-norm convergence.

Consider now the specific example where �(x) = (1 + x2)−(1+r)∕2 for some fixed con-
stant r ≥ 1 , at least when |x| ≥ Δ ≥ 1 (so, � is essentially a Student’s t-distribution). 
Then we have:

Theorem 4  The above one-dimensional PDMP converges to stationarity in total variation 
distance at polynomial rate equal to r. More precisely, for any x ∈ X ,

Furthermore, for any p ∈ [0, 1) , for appropriate drift function V as defined in the proof, 
the process converges to stationarity in the V (1−�)p-norm at polynomial order approaching 
(1 − p)r , i.e. for any a < r,

Proof  First, for the assumed form of � , we have for |x| ≥ Δ that

lim
t→∞

t�−1 ‖Pt(x, ⋅) − �(⋅)‖TV = 0 .

AV ≤ −� |x|�−1 [1 + o(|x|)] ≤ −
�

2
|x|�−1 ≤ −

�

2

(
[V(x)∕c1]

1∕�
)�−1

= −c V(x)1−(1∕�)

lim
t→∞

ta ‖Pt(x, ⋅) − 𝜋(⋅)‖TV =

�
0, a < r

∞, a > r

lim
t→∞

t(1−p)a ‖Pt(x, ⋅) − �(⋅)‖V (1−�)p = 0 .
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It follows that �(x, v) ≥ (1 + r)∕(1 + x) for v = +1 and x ≥ Δ ≥ 1 . Next, for some 𝛽 > 1 
and K > 1 to be determined later, let

Next, note that this process has infinitesimal generator A which acts (cf. Ethier and 
Kurtz 1986; Deligiannidis et al. 2019) on appropriate C1 functions f ∶ X × {−1, 1} → � 
by:

Hence, for v = +1 and x ≥ Δ,

Suppose it holds that

Then (K − 1)(r + 1) − 𝛽K > 0 , so AV(x, v) < 0 for v = +1 and x ≥ Δ . Meanwhile, for 
x ≥ Δ and v = −1 we have �(x, v) = 0 , so we compute from (1) that

Combining these two calculations, it follows that if K∗ = min
[
�, (K − 1)(r + 1) − �K

]
 , 

then assuming (2), we have for x ≥ Δ and either v = +1 or v = −1 that

By symmetry, this condition also holds for x ≤ −Δ , i.e. it holds whenever |x| ≥ Δ . 
This shows that the assumptions of Corollary 2 hold with � = 1∕� , so (1 − �)∕� = � − 1 . 
Hence, that corollary gives that

and in particular with p = 0,

It remains to ensure that (2) holds. But (2) can be satisfied for any 𝛽 < 1 + r by using 
a sufficiently large K. It follows that the polynomial order � − 1 can be made ≥ r − � for 
any 𝜖 > 0 , i.e. we can take � − 1 = a for any a < r , which gives the claimed upper bounds.

𝜆(x, v) ∶=
[
−v (log𝜋)�(x)

]+
=

(1 + r)(xv)+

1 + x2
=

{ (1+r)xv

1+x2
, xv > 0

0 , xv < 0

V(x, v) =

{
K(1 + |x|)𝛽 , xv > 0

(1 + |x|)𝛽 , xv < 0

(1)Af (x, v) = v
�f

�x
+ �(x, v)

[
f (x,−v) − f (x, v)

]
.

AV(x, v) = �K(1 + x)�−1 − �(x, v) (K − 1)(1 + x)�

≤ −(1 + x)�−1
[
(K − 1)(r + 1) − �K

]
.

(2)1 < 𝛽 < 1 + r, and K > (1 + r)∕(1 + r − 𝛽) .

AV(x, v) = −�(1 + x)�−1 .

AV(x, v) ≤ −K∗(1 + x)�−1 = −K∗
(
V(x)

)(�−1)∕�
= −K∗

(
V(x)

)1−(1∕�)
.

lim
t→∞

t(1−p)(�−1) ‖Pt(x, ⋅) − �(⋅)‖V (1−�)p = 0 ,

lim
t→∞

t�−1 ‖Pt(x, ⋅) − �(⋅)‖TV = 0 .
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Finally, for the lower bound, note that since the process never moves faster than speed 1, 
we must have Pt((x,±1), (t,∞)) = 0 for x ≤ 0 , and similarly that Pt((x,±1), (−∞,−t)) = 0 
for x ≥ 0 . Hence, for any x ∈ � , by symmetry,

which to first order as t → ∞ is

This completes the proof. ▪

5 � Multi‑Dimensional Generator Bounds

We now turn to PDMP on X = �d . At each time, the process has position x and velocity v 
with |v| = 1 . The process primarily moves at fixed constant velocity v. It also reflects along 
� ’s contour lines at the hazard rate

And it refreshes, by drawing a new v independently from the uniform distribution Ψ 
on the unit sphere in �d , with refresh rate which we take to be s/ |x| for some choice of 
s > 0 to be determined later, which does not depend on x (but might still depend on d). 
(This choice of |x|−1 refresh rate decay helps avoid diffusive behaviour for large |x|, and 
makes the process self-similar in the sense that multiplying it by a constant preserves the 
trajectories just at a slower speed, and also balances the influence of refreshes with those 
of the continuous dynamics and reflections as we shall see, thus facilitating our calcula-
tions and analysis.)

To proceed, consider a drift function of the form

for some 𝛽 > 1 , where

is the cosine of the angle between x and v, and W(C) ≥ 1 is a function which will be cho-
sen later. We assume that W has right-hand first derivatives (at least), denoted W �(C) . Let 
E ∶= �Ψ[W(Cx,U)] be the expected value of W(Cx,U) where U ∼ Ψ . Extending (1) to mul-
tiple dimensions, and including the refreshes at rate s/ |x|, this process has infinitesimal 
generator A which acts on appropriate C1 functions f ∶ X × {−1, 1} → � by

(for background see e.g. Ethier and Kurtz 1986; Deligiannidis et al. 2019). Then we have:

‖Pt(x, ⋅) − �(⋅)‖TV ≥ 1

2
�
�
(t,∞)

�
,

∫
∞

t

(1 + x2)−(1+r)∕2 dx ≈ ∫
∞

t

(x2)−(1+r)∕2 dx = ∫
∞

t

x−(1+r) dx = t−r∕(1 + r) = Ω(t−r) .

�(x, v) =
(
− (∇ log�) ⋅ v

)+

.

V(x, v) = W(Cx,v) 1 + |x|� ,

Cx,v = x ⋅ v
/
|x|

Af (x, v) = v ⋅ ∇x f (x) + �(x, v)
[
f (x,−v) − f (x, v)

]
+

s(x)

|x|
[
E − f (x, v)

]
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Theorem 5  The above PDMP has infinitesimal generator satisfying

where

The proof of Theorem 5 requires a simple gradient lemma:

Lemma 6  For any a ∈ � , ∇x(|x|a) = a|x|a−2x.

Proof  If h(x) = |x|2 = x2 , then ∇x h(x) = 2x . Hence, by the chain rule,

Proof of Theorem 5  We wish to compute the generator AV . Write this as A1V +A2V +A3V , 
where A1 is the contribution from the continuous dynamics, and A2 is the contribution from 
reflections, and A3 is the contribution from refreshing.

We begin with A1V (the continuous dynamics). We compute that

Now, since ∇xx ⋅ v = v , Lemma 6 with a = 1 gives

Hence,

And, Lemma 6 with a = � gives

Hence, by the product rule for derivatives,

Then since v ⋅ v = 1 and x ⋅ v = |x|Cx,v,

AV(x, v) = |x|�−1 B(x, v)
[
1 + O

(
|x|−�

)]
, as |x| → ∞ ,

B(x, v) =
[
W(Cx,v) � Cx,v +W �(Cx,v)(1 − Cx,v

2)
]

+
[
�(x, v) |x| [W(−Cx,v) −W(Cx,v)]

]

+
[
s (E −W(Cx,v))

]
.

∇x(|x|a) = ∇x(h(x)
a∕2) = (a∕2)[h(x)](a∕2)−1(2x) = a|x|a−2x . ▪

A1V(x, v) =
�V(x, v)

�t
=

d∑

i=1

�V(x, v)

�xi

�xi

�t
=

(
∇xV(x, v)

)
⋅ v .

∇x Cx,v = ∇x

(
x ⋅ v

|x|

)
=

|x|v − x ⋅ v|x|−1 x
|x|2

=
v

|x|
−

x ⋅ v x

|x|3
=

v

|x|
−

Cx,v x

|x|2
.

(∇x Cx,v) ⋅ v =
v ⋅ v

|x|
−

Cx,v x ⋅ v

|x|2
.

∇x|x|� = �|x|�−2x .

∇xV(x, v) = W(Cx,v) ∇x

(
|x|�

)
+
(
1 + |x|�

)
W �(Cx,v) ∇xCx,v

= W(Cx,v) �|x|�−2x + 1 + |x|� W �(Cx,v)
(

v

|x|
−

Cx,v x

|x|2
)
.
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We next consider A2V  (reflections). They occur at rate �(x, v) , and change v to −v , 
hence Cx,v to −Cx,v , so they change V(x,  v) from W(Cx,v) 1 + |x|� to W(−Cx,v) 1 + |x|� , 
which is a change of [W(−Cx,v) −W(Cx,v)] 1 + |x|� . It follows that

Finally, we consider A3V(x, v) (refreshing). Refreshes occur at rate s/|x|, and replace  
the current velocity v with a fresh i.i.d. draw from the spherically-symmetric distri-
bution Ψ on {z ∈ �d ∶ |z| = 1} . This changes V(x,  v) from W(Cx,v) (1 + |x|�) to  
W(Cx,U) (1 + |x|�) where U ∼ Ψ , which is a difference of [W(Cx,U) −W(Cx,v)] (1 + |x|�) . 
Hence,

where E ∶= �Ψ[W(Cx,U)].
Putting this all together, the claim follows since A = A1 +A2 +A3 . ▪
We now assume that � has polynomial tails as in a Student’s t-distribution, i.e. that

at least for |x| ≥ Δ . Theorem 5 then gives:

Corollary 7  If � is given by 3, then the above PDMP has infinitesimal generator satisfying

where

Proof  Here for |x| > Δ we have log�(x) = −
(
(r + d)∕2

)
log(1 + |x|2) , so

A1V(x, v) =
(
∇xV(x, v)

)
⋅ v

= W(Cx,v) �|x|�−2x ⋅ v + 1 + |x|� W �(Cx,v)
(

1

|x|
−

Cx,v x ⋅ v

|x|2
)

= W(Cx,v) �|x|�−1Cx,v + 1 + |x|� W �(Cx,v)
(

1

|x|
−

Cx,v
2

|x|

)

= |x|�−1
[
W(Cx,v) � Cx,v +W �(Cx,v)(1 − Cx,v

2)
]
[1 + O(|x|−�)] .

A2V(x, v) = �(x, v) [W(−Cx,v) −W(Cx,v)] 1 + |x|�

= �(x, v) |x| [W(−Cx,v) −W(Cx,v)] |x|�−1 [1 + O(|x|−�)] .

A3V(x, v) =
s

|x|
[E −W(Cx,v)] 1 + |x|� = s [E −W(Cx,v)] |x|�−1 [1 + O(|x|−�)]

(3)�(x) ∝ (1 + |x|2)−(r+d)∕2

AV(x, v) = |x|�−1 M(Cx,v)
[
1 + O

(
|x|−�

)]
, as |x| → ∞

M(C) =
[
W(C) � C +W �(C)(1 − C2)

]

+
[
(r + d) C+ [W(−C) −W(C)]

]

+
[
s (E −W(C))

]
.

∇ log�(x) = −
r + d

2

2x

1 + |x|2
= −(r + d)

x

1 + |x|2
,
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and

The result then follows from Theorem 5. ▪

6 � Multi‑Dimensional Convergence Rates

In this section, we prove the following bound on the polynomial convergence rate of high-
dimensional PDMP:

Theorem  8  For the above PDMP, for all sufficiently large d ∈ � , with � as in (3) with 
r > (2𝜋 − 1)d , we have for any a < (r + d)

√
2𝜋∕d − 1 and any p ∈ [0, 1) that

for appropriate choice of refresh parameter s and drift function V as defined in the proof. 
In particular,

That is, the process converges to stationarity in total variation distance at polynomial 
order approaching (r + d)

√
2�∕d − 1 . On the other hand, for any a > r,

Proof  To obtain specific convergence rate bounds, we need to choose the function W(C) 
in the drift function V(x, v) = W(Cx,v) 1 + |x|� . After considering many possible choices, 
including some complicated ones, we eventually settled on the simple piecewise-linear choice

for some m ∈ (0, 1) . For this W(C), let M(C) be as in Corollary  7. Note that 
V(x, v) ∶= W(Cx,v) (1 + |x|𝛽) ≥ (1 + m(−1))(1) = 1 − m =∶ c0 > 0 . Hence, by Cor-
ollary  3, it suffices to find values s > 0 and m > 0 (perhaps depending on d) such that 
supC∈[−1,1] M(C) < 0 for all sufficiently large d.

To proceed, let k = r∕d , so k > 2𝜋 − 1 . Then (k + 1)∕
√
2𝜋 >

√
2𝜋 . Hence, we can find  

small enough 𝜖 > 0 that 𝜉 ∶= (1 − 𝜖)3(k + 1)∕
√
2𝜋 >

√
2𝜋 . Then set s = �

√
d (so 

s >
√
2𝜋d ), and m = 1∕2 (so 4m2 = 1 > 1 − 𝜖 ), and � = (1 − �)2(k + 1)

√
d∕2� so 𝛽 >

(1 − �)3(k + 1)
√
d∕2� = �

√
d and also

�(x, v) = (r + d)
x ⋅ v+

1 + |x|2
= (r + d) Cx,v

+ |x|−1
[
1 + O

(
|x|−2

)]
.

lim
t→∞

t(1−p)a ‖Pt(x, ⋅) − �(⋅)‖V (1−�)p = 0

lim
t→∞

ta ‖Pt(x, ⋅) − �(⋅)‖TV = 0 .

lim
t→∞

ta ‖Pt(x, ⋅) − �(⋅)‖TV = ∞ .

(4)W(C) = 1 + mC �C<0 ∶=

{
1, C ≥ 0

1 + mC, C < 0

(5)

�2 = (1 − �)4(k + 1)2d∕2�

= (1 − �)�(k + 1)d∕
√
2�

= (1 − �)4m2�(k + 1)d∕
√
2� .
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We now consider separately the cases C < 0 and C ≥ 0.
For C < 0 , it follows from 4 that W(C) = 1 + mC and W �(C) = m and C+ = 0 , so

Hence

Next we use Lemma 9 below, which states that E = 1 − m
√
1∕2�d

�
1 + O

�
1

d

��
 so

and hence

which is < 0 for all sufficiently large d since 𝜉 >
√
2𝜋 . Also,

so for sufficiently large d (since s >
√
2𝜋d and −m < 0),

since m = 1∕2 and 𝛽 > 𝜉
√
d . Furthermore, for C < 0 , M��(C) = 2(m𝛽 − m) = 2m(𝛽 − 1) > 0 ,  

i.e. M is convex. It follows that

For C ≥ 0 , it follows from (4) that W(C) = 1 and W �(C) = 0 and C+ = C , and also W(−C) =

1 − mC , so

Hence, M�(C) = � − 2(r + d)mC . So, on [0,  1], the function M is first increasing and 
then decreasing, with a maximum where � − 2(r + d)mC = 0 so C = �∕2(r + d)m . Hence, 
again using (6),

Then, using the bound (5) and that (k + 1)d = r + d , this is

M(C) = �C + m�C2 + m − mC2 + s(E − 1 − mC)

= C2m(� − 1) + C(� − ms) + (m − s(1 − E)) .

M(0−) ∶= lim
C↗0

M(C) = m − s(1 − E) .

(6)1 − E = m
√
1∕2�d

�
1 + O

�1
d

��
,

M(0−) = m
�
1 − s

√
1∕2�d

�
1 + O

�1
d

���

= m
�
1 − �

√
1∕2�

�
1 + O

�1
d

���
,

M(−1) = m(� − 1) − � + ms + (m + s(E − 1))

= m(� − 1) − � + ms + m
�
1 − s

√
1∕2�d

�
1 + O

�1
d

���
,

M(−1) < (m − 1)𝛽 + ms = (m − 1)𝛽 + m𝜉
√
d < 0

sup
C∈[−1,0)

M(C) ≤ sup
0≤𝜆≤1

𝜆M(−1) + (1 − 𝜆)M(0−) = max
[
M(−1), M(0−)

]
< 0 .

M(C) = �C − (r + d)mC2 + s(E − 1) .

sup
C∈[0,1]

M(C) = M
�
�
�
2(r + d)m

�

= �2
��
2(r + d)m

�
− (r + d)�2m

��
4(r + d)2m2

�
+ s(E − 1)

= �2
��
4(r + d)m

�
− m�

√
1∕2�

�
1 + O

�1
d

��
.



Methodology and Computing in Applied Probability            (2023) 25:6 	

1 3

Page 15 of 18      6 

so it must be < 0 for all sufficiently large d.
The above results show that supC∈[−1,1] M(C) < 0 . The stated convergence in V (1−�)p-

norm then follows from Corollary  3. And since this convergence holds for any choice 
� = (1 − �)2(k + 1)

√
d∕2� for sufficiently small 𝜖 > 0 , it holds for any 𝛽 < (k + 1)

√
d∕2𝜋 . 

Hence, the stated conclusion holds for any a = 𝛽 − 1 < (k + 1)
√
d∕2𝜋 − 1 , as claimed.

For the lower bound, similar to Theorem 4 we have since |v| = 1 that

where St = {x ∈ �d ∶ |x| ≥ t} . But for large t, we have using polar coordinates that

so ‖Pt(x, ⋅) − �(⋅)‖TV ≥ Ω(t−r) , and hence limt→∞ ta‖Pt(x, ⋅) − �(⋅)‖TV = ∞ for a > r . ▪

7 � An Expectation Computation

To complete the proof of Theorem 8, we require the following computation:

Lemma 9  For W(C) as in (4), consider the expected value E ∶= �Ψ[W(Cx,U)] , where 
U ∼ Ψ where Ψ is the uniform distribution on the unit sphere in �d for some d > 1 , and 
x ≠ 0 is any fixed vector in �d , and Cx,U is the cosine of the angle between x and U. Then

To prove Lemma 9, we first need another lemma giving the Cx,U density function:

Lemma 10  Let U ∼ Ψ as in Lemma 9. Then the quantity Cx,U has density function on [−1, 1] 
proportional to f (c) = (1 − c2)(d−3)∕2.

Proof  Let (e1,… , ed) be an orthonormal basis of �d with e1 = x∕|x| , and write Z = (Z1,… , Zd) 
in this basis where {Zi} are i.i.d. N(0, 1). Then the unit vector Z ∕ |Z| has uniform distribution Ψ , 
so Cx,U has the same distribution as

Therefore, Cx,U
2 has the same distribution as

≤ (1 − �)4m2�(k + 1)(d∕
√
2�)

��
4(r + d)m

�
− m�

√
1∕2�

�
1 + O

�
1

d

��

= (1 − �)m�(1∕
√
2�) − m�

√
1∕2�

�
1 + O

�
1

d

��
=

�
− � + O

�
1

d

��
m�∕

√
2� ,

‖Pt(x, ⋅) − �(⋅)‖TV ≥ 1

2
�(St)

�(St) ∝ ∫|x|≥t(1 + |x|2)−(r+d)∕2 dx ∝ ∫ ∞

�=t
(1 + �2)−(r+d)∕2 �d−1 d�

≥ ∫ ∞

�=t
(�2)−(r+d)∕2 �d−1 d� = ∫ ∞

�=t
�−r−1 d� =

−�−r

r

|||
�=∞

�=t
=

t−r

r
∝ t−r ,

E = 1 − m
1∕(d − 1)

√
� Γ(

d−1

2
)∕Γ(

d

2
)
= 1 − m

√
1∕2�d

�
1 + O

�
1

d

��
as d → ∞ .

x

|x|
⋅

Z

|Z|
= (1, 0,… , 0) ⋅

(Z1, Z2,… , Zd)

|Z|
=

Z1

|Z|
.
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using the general property that if X ∼ �2(�) and Y ∼ �2(�) are independent, then 
X

X+Y
∼ Beta(

�

2
,

�

2
) . Hence, Cx,U

2 has density function on [0,  1] proportional to h(c) =

c
1

2
−1(1 − c)

d−1

2
−1 = c

−1∕2(1 − c)(d−3)∕2.

Then, |Cx,U| =
√

Cx,U
2 = g(Cx,U

2) where g(c) =
√
c and g−1(c) = c2 . So, by the change-

of-variable formula, |Cx,U| has density on [0, 1] proportional to

Finally, since Cx,U is symmetric about 0, the density of Cx,U on all of [−1, 1] must also be 
proportional to (1 − c2)(d−3)∕2 . ▪

Proof of Lemma 9  We compute using Lemma 10 that

But for d > 1 , it can be computed that ∫ 0

−1
c (1 − c2)(d−3)∕2 = −

1

d−1
 , and ∫ 1

−1
(1 − c

2)(d−3)∕2 =
√
� Γ(

d−1

2
)
�
Γ(

d

2
) . Hence,

Next, we use Stirling’s Approximation, which says (e.g.  Jameson  2015) that for all 
x > 0 , we have

It follows that as x → ∞,

Hence, as d → ∞,

Now, as x → 0 , ex = 1 + x + O(x2) , i.e. 1 + x = ex + O(x2) = ex[1 + O(x2)] . So, as 
d → ∞ , d−1

d
= 1 −

1

d
= e−1∕d [1 + O(d−2)] , whence

and so

Z2
1

|Z|2
=

Z2
1

Z2
1
+ (Z2

2
+…+ Z2

d
)
=

�2(1)

�2(1) + �2(d − 1)
∼ Beta

(
1

2
,
d − 1

2

)
,

h
(
g−1(c)

) |||
d

dc
g−1(c)

||| = h(c2)
|||
d

dc
c2
||| = c−1 (1 − c2)(d−3)∕2 |2c| ∝ (1 − c2)(d−3)∕2 .

E ∶= �[W(Cx,U)] = 1 + m�[Cx,U �Cx,U<0
] = 1 + m

∫ 0

−1
c (1 − c2)(d−3)∕2 dc

∫ 1

−1
(1 − c2)(d−3)∕2 dc

.

(7)E = 1 − m
1∕(d − 1)

√
� Γ(

d−1

2
)
�
Γ(

d

2
)
.

√
2� xx−1∕2e−x ≤ Γ(x) ≤ √

2� xx−1∕2e−xe1∕(12 x) .

Γ(x) =
√
2� xx−1∕2e−x

�
1 + O

�
1

x

��
.

Γ(
d − 1

2
)
�

Γ(
d

2
) =

(
d−1

2
)
d−2

2 e
−

d−1

2

(
d

2
)
d−1

2 e
−

d

2

�
1 + O

�
1

d

��
=

�
d − 1

d

� d−2

2
√
2e∕d

�
1 + O

�
1

d

��
.

(
d − 1

d

)d

=
(
e−1∕d [1 + O(d−2)]

)d

= e−1
[
1 + O

(
1

d

)]
,
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It follows that

Therefore, from (7),

as claimed. ▪

Author Contribution  This project was an equal collaboration between the two authors.

Funding  GOR was supported by EPSRC grants Bayes for Health (R018561) and CoSInES (R034710). JSR 
was supported by NSERC discovery grant RGPIN-2019-04142.

Data Availability  This paper introduces no new data nor materials, aside from the R script for the computer 
simulations which is freely available at: probability.ca/Rpoly

Declarations 

Conflict of Interest  The authors declare that they have no financial nor non-financial competing interests.

References

Andrieu C, Dobson P, Wang AQ (2021a) Subgeometric hypocoercivity for piecewise-deterministic Markov 
process Monte Carlo methods. Elec J Prob 26:1–26

Andrieu C, Durmus A, Nüsken N, Roussel J (2021b) Hypocoercivity of piecewise deterministic Markov 
process-Monte Carlo. Ann Appl Prob 31(5):2478–2517

Bierkens J (2021) Piecewise deterministic Monte Carlo web resource page. https://​diamw​eb.​ewi.​tudel​ft.​nl/​
~joris/​pdmps.​html

Bierkens J, Fearnhead P, Roberts GO (2019) The Zig-Zag process and super-efficient sampling for Bayesian 
analysis of big data. Ann Stat 47(3):1288–1320

Bierkens J, Roberts GO, Zitt PA (2019) Ergodicity of the zigzag process. Ann Appl Prob 29(4):2266–2301
Bouchard-Côté A, Vollmer SJ, Doucet A (2018) The bouncy particle sampler: a nonreversible rejection-free 

Markov chain Monte Carlo method. J Amer Stat Assoc 113(522):855–867
Brooks S, Gelman A, Jones G, Meng X-L (eds) (2011) Handbook of Markov chain Monte Carlo. Chapman 

& Hall, New York
Deligiannidis G, Bouchard-Côté A, Doucet A (2019) Exponential ergodicity of the Bouncy Particle sam-

pler. Ann Stat 47(3):1268–1287
Ethier SN, Kurtz TG (1986) Markov processes, characterization and convergence. Wiley, New York
Fort G, Moulines E (2000) V-subgeometric ergodicity for a Hastings-Metropolis algorithm. Stat Prob Lett 

49:401–410
Fort G, Moulines E (2003) Polynomial ergodicity of Markov transition kernels. Stoch Proc Appl 103(1):57–99
Fort G, Roberts GO (2005) Subgeometric ergodicity of strong Markov processes. Ann Appl Prob 

15(2):1565–1589
Jameson GJO (2015) A simple proof of Stirling’s formula for the gamma function. Math Gazette 99(544):68–74
Jarner SF, Roberts GO (2002) Polynomial convergence rates of Markov chains. Ann Appl Prob 12:224–247
Meyn SP, Tweedie RL (1993) Markov chains and stochastic stability. Springer-Verlag, London. Available at 

proba​bility.​ca/​MT

(
d − 1

d
)
d−2

2 =
[(

d − 1

d

)d]1∕2( d

d − 1

)
= (e−1)1∕2

[
1 + O

(
1

d

)]
.

Γ(
d − 1

2
)
�

Γ(
d

2
) = e−1∕2

√
2e∕d

�
1 + O

�
1

d

��
=

√
2∕d

�
1 + O

�
1

d

��
.

E = 1 − m
1∕(d − 1)
√
�
√
2∕d

�
1 + O

�
1

d

��
= 1 − m

√
1∕2�d

�
1 + O

�
1

d

��
,

https://diamweb.ewi.tudelft.nl/%7ejoris/pdmps.html
https://diamweb.ewi.tudelft.nl/%7ejoris/pdmps.html
https://probability.ca/MT


	 Methodology and Computing in Applied Probability            (2023) 25:6 

1 3

    6   Page 18 of 18

Rosenthal JS (2002) Quantitative convergence rates of Markov chains: a simple account. Elec Comm Prob 
7:123–128

Vasdekis G, Roberts GO (2021) A note on the polynomial ergodicity of the one-dimensional Zig-Zag pro-
cess. J Appl Prob. https://​arxiv.​org/​abs/​2106.​11357​v2

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

https://arxiv.org/abs/2106.11357v2

	Polynomial Convergence Rates of Piecewise Deterministic Markov Processes
	Abstract
	1 Introduction
	2 Computer Simulations of the PDMP
	3 Polynomial Convergence Rates of Markov Processes
	4 Convergence Rate in One Dimension
	5 Multi-Dimensional Generator Bounds
	6 Multi-Dimensional Convergence Rates
	7 An Expectation Computation
	References


