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This paper addresses the issue of optimal deconvolution density estimation on
the 2-sphere. Indeed, by using the transitive group action of the rotation matrices
on the 2-dimensional unit sphere, rotational errors can be introduced analogous to
the Euclidean case. The resulting density turns out to be convolution in the Lie
group sense and so the statistical problem is to recover the true underlying density.
This recovery can be done by deconvolution; however, as in the Euclidean case, the
difficulty of the deconvolution turns out to depend on the spectral properties of the
rotational error distribution. This therefore leads us to define smooth and super-
smooth classes and optimal rates of convergence are obtained for these smoothness
classes. � 2001 Academic Press
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1. INTRODUCTION

Deconvolution techniques have been shown to be of practical use in
situations where the data is indirectly observed. Indeed, if the underlying
density is a mixture of several densities, deconvolution allows one to
recover the main components of the mixture; see Efromovich (1997) for a
recent example of the benefits of circular deconvolution. Therefore, asymptotic
optimally in deconvolution density estimation has been investigated in the
statistical literature; see Fan (1991, 1991a, 1993), Efromovich (1997), and
Koo and Chung (1998). The main problem involves identifying the smoothness
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of the characteristic function of the error distribution into ordinary smooth
or super-smooth classes for which the resulting convergence turns out to be
polynomial or logarithmic, respectively.

The above involve deconvolution in Euclidean space, however, some
recent interest in non-Euclidean deconvolution has appeared in the statistical
literature. Rooij and Ruymgaart (1991) first motivated deconvolution on
the two dimensional unit sphere, S2. Healy and Kim (1996) and Healy
et al. (1998) work out the technical details for consistency. Indeed, the
problem is as follows. In the case of S2, measurement error can be
modelled analogous to Euclidean error by using the transitive group action
SO(3)_S 2 � S 2, where SO(3) is the space of 3_3 rotation matrices. Then
under appropriate smoothness, rates of convergence are obtained. It is then
natural to ask whether or not these rates of convergence are optimal as
defined in Fan (1993) and Koo (1993). It will be shown that definitions of
ordinary smooth and super-smooth can be made through the operator
norm of the rotational Fourier transform of the error distribution. These
smoothness classes then lead to polynomial or logarithmic rates of
convergence, respectively.

We now provide a summary of what is to follow.
In Section 2, we briefly go over the necessary Fourier tools for the

2-dimensional unit sphere and the 3-dimensional rotation matrices, as well
as the connections between the two. The latter involves how convolution as
well as how Fourier transforms change convolution into individual Fourier
products similar to the Euclidean case.

In Section 3, we outline the deconvolution problem of the 2-sphere. In
addition, we define smooth and super-smooth densities on the space of
3-dimensional rotation matrices. This is done in the Fourier domain using
the operator norm. Following this we state the main results. We also make
a connection with some earlier work by Hendriks (1990). The latter
obtains upper bound rates of convergence for nonparametric density
estimators on compact Riemannian manifolds. It follows as a corollary to
one of our main results that in the case of the 2-sphere, this convergence
is optimal.

Since this area is relatively new in statistics, in order to motivate the
problem further, we provide examples of rotational error densities in
Section 4. Two examples of smooth densities as well as an example of a
super-smooth density are introduced. The latter involves the rotational
version of the Gaussian distribution, while the former involves the rota-
tional version of the Laplace (double exponential) distribution as well as a
distribution obtained from the random walks on groups literature. All of
these distributions are spectrally defined.

In Section 5 we examine the von Mises�Fisher matrix distribution by
calculating it's rotational Fourier transform. Once the calculations are
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complete, we notice that although the super-smooth definition appears
appropriate, we can almost (but not exactly) get the same power in the
exponent on both sides of the inequalities. Consequently, we can almost get
the same upper and lower rates of convergence.

All proofs are collected in Section 6. We first establish upper bounds and
demonstrate that these upper bounds are also lower bounds by specifying
a subproblem. This method follows the outline of Koo (1993) and Koo and
Chung (1998), however, one does need to accommodate for the spherical
geometry in the construction. It is found that as far as the rates of con-
vergence are concerned, aside from the smoothness class of the underlying
rotational error distribution, these rates only depend on the dimension of
the 2-sphere.

2. SOME PRELIMINARIES

We will provide a brief overview of Fourier analysis on SO(3) and S2.
Most of the material in expanded form can be found in Talman (1968),
Terras (1985), Healy and Kim (1996), and Healy et al. (1998). Papers
which directly deal with similar issues can be found in Lo and Eshelman
(1979) and Wahba (1981).

The well known Euler angle decomposition says, any g # SO(3) can
almost surely be uniquely represented by three angles (,, %, �), known
collectively as the Euler angles, where , # [0, 2?), % # [0, ?), � # [0, 2?); see
Healy and Kim (1996) and Healy et al. (1998) for details. Consider the
function,

D l
q1 q2

(,, %, �)=e&iq1, d l
q1q2

(cos %) e&iq2�, (2.1)

where, d l
q1q2

for &l�q1 , q2�l, l=0, 1, ... are related to the Jacobi polyno-
mials; see Lo and Eshelman (1979). The functions D l

q1q2
, &l�q1 , q2�l,

l=0, 1, ..., are the eigenfunctions of the Laplace�Beltrami operator on
SO(3), hence, [- 2l+1 D l

q1q2
: &l�q1 , q2�l, l=0, 1, ...] is a complete

orthonormal basis for L2(SO(3)) with respect to the probability Haar
measure and are otherwise known as the rotational harmonics. In addition,
if we define a (2l+1)_(2l+1) matrix by

Dl (g)=[D l
q1q2

(g)], (2.2)

where &l�q1 , q2�l, l�0 and g # SO(3), these constitute the collection of
inequivalent irreducible representations of SO(3).
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Let f # L2(SO(3)). We define the rotational Fourier transform on SO(3) by

f� l
q1q2

=|
SO(3)

f (g) D l
q1q2

(g) dg, (2.3)

where again we think of (2.3) as the matrix entries of the (2l+1)_(2l+1)
matrix f� l=[ f� l

q1q2
], &l�q1 , q2�l, l=0, 1, ... and dg is the probability

Haar measure on SO(3). The rotational inversion can be obtained by

f (g)= :
l�0

:
l

q1 , q2=&l

(2l+1) f� l
q1q2

D l
q1q2

(g)

= :
l�0

:
l

q1 , q2=&l

(2l+1) f� l
q1q2

D l
q2q1

(g&1), (2.4)

for g # SO(3), where the overbar denotes complex conjugation. Strictly
speaking, (2.4) should be interpreted in the L2-sense although with
additional smoothness conditions, it can hold pointwise.

Spherical Fourier analysis also has similar results. Any point on S2 can
be represented by

|=(cos , sin %, sin , sin %, cos %)t,

where % # [0, ?), , # [0, 2?) and superscript t denotes transpose. Let

Y l
q(|)=Y l

q(%, ,)=(&1)q �(2l+1)(l&q)!
4?(l+q)!

P l
q(cos %) eiq,, (2.5)

where % # [0, ?), , # [0, 2?), &l�q�l, l=0, 1, ... and P l
q( } ) are the Legendre

functions. We note that we can think of (2.5) as the vector entries to the
2l+1 vector Y l (|)=[Y l

q(|)], l�0. In this situation

[Y l
q : &l�q�l, l=0, 1, ...]

form a complete orthonormal basis over L2(S2) and is sometimes referred
to as the spherical harmonics; see Talman (1968).

Let f # L2(S 2). We define the spherical Fourier transform on S2 by

f� l
q=|

S 2
f (|) Y l

q(|) d|, (2.6)
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where d| is the spherical measure on S2. Again we think of (2.6) as the
vector entries of the (2l+1) vector f� l=[ f� l

q], &l�q�l, l=0, 1, ... . The
spherical inversion can be obtained by

f (|)= :
l�0

:
l

q=&l

f� l
qY l

q(|), (2.7)

for | # S2. Again, strictly speaking, (2.7) should be interpreted in the L2-sense
although with additional smoothness conditions, it can hold pointwise.

In terms of the Fourier basis, the relation between SO(3) and S 2 can be
described in terms of the Euler angles where

Y l
q(%, ,)=�(2l+1)

4?
D l

q0 (,, %, �), (2.8)

, # [0, 2?), % # [0, ?), &l�q�l and l=0, 1, ... . We note that although an
extra angle � appears in the right hand side of (2.8), it is in fact independent
of �. This follows from (2.1) and observing that when q2=0, the expression
becomes independent of �.

One of the most useful tools of Fourier analysis is the fact that convolu-
tion of two functions in the Fourier domain turns out to be ordinary
matrix multiplication. Indeed, let f # L2(SO(3)) and h # L2(S 2). Define the
convolution,

f V h(|)=|
SO(3)

f (u) h(u&1|) du, (2.9)

for | # S2. We have the following convolution property for f # L2(SO(3))
and h # L2(S2)

f V h@= f� h� . (2.10)

In particular, for each l=0, 1, ...,

( f V h@) l
q= :

l

j=&l

f� l
q j h�

l
j ,

for all &l�q�l, see Lemma 2.1 in Healy et al. (1998), or exercise 25 of
Terras (1985, p. 106).
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3. DECONVOLUTION DENSITY ESTIMATION

Consider the following situation

Z==X, (3.1)

where = is an SO(3) random element and Z, X are S2 random elements,
with = and X assumed independent. We note that (3.1) is describing the
transitive group action SO(3)_S 2 � S 2 which consists of ordinary matrix
multiplication, where transitive means that for any two |, & # S 2, there
exists a g # SO(3) such that |= g&.

Let fZ , f= , fX denote the densities of Z, =, X, respectively. Through (3.1),
the relation among the densities can be described by convolution,

fZ= f= V fX

as seen by following the familiar corresponding Euclidean result. We note
that since f= and fX are density functions, we have

inf
| # S 2

fX (|)�|
SO(3)

f=(u) fX (u&1|) du� sup
| # S2

fX (|). (3.2)

Now consider f� l
X and f� l

Z for each l�0 given by [ f� l
X, q] and [ f� l

Z, q],
respectively, and f� l

= as the matrix [ f� l
=, q j] for each l�0. By (2.10) we can

write

f� l
X=( f� l

=)
&1 f� l

Z ,

provided of course that the matrices ( f� l
=)

&1 exist for all l=0, 1, ... in a
range of interest.

Statistically, (3.1) is describing the non-Euclidean analogue of observa-
tions Z made up of the true measurement X, corrupted by noise =. Our
interest is in the unknown fX . It is assumed that f= is known and that
( f� l

=)
&1 exists for a range of l 's that concerns us. Since fX is unknown, fZ

is also unknown, hence f� Z is unknown. Nevertheless, we assume that a
random sample Z1 , ..., Zn is available. This will allow us to construct an
empirical version f� n

Z . By (2.10) an estimator for f� X is therefore

f� n, l
X =( f� l

=)
&1 f� n, l

Z , (3.3)

for l=0, 1, ... . We can then produce a nonparametric deconvolution den-
sity estimator of fX by (2.7), the spherical inversion.
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3.1. Smooth and Super-Smooth Errors

Deconvolution density estimation has been investigated for some time
now and the degree to which we can recover the density fX is best charac-
terized in terms of the quality of smoothness of f= . Indeed, following Fan
(1991a) we will appropriately define the smoothness of f= spectrally, with a
modification.

The necessary modification required comes from the fact that on SO(3),
Fourier transforms are matrices that grow in dimension. Consequently, the
quality of smoothness need to be adapted for this change and this can be
done by regarding convolution as an operator. Indeed, let El be the
(2l+1)-dimensional vector space spanned by [Y l

q : &l�q�l] for each
l=0, 1, ... . Thus any h # El can be written as h=� l

q=&l h� l
qY l

q and through
Parseval's identity, the usual L2-norm is &h&2

2=� l
q=&l |h� l

q |2. Now according

to (2.10), f� l
= : El � El by f� lh=� l

q=&l (� l
j=&l f� l

=, qj h�
l
j) Y l

q . Again by Parseval's
identity, & f� lh&2=� l

q=&l |� l
j=l f� l

=, qjh�
l
j |

2, for all l�0. Consequently, we
have the operator inequality,

& f� lh&2�& f� l
=&op &h&2 , where & f� l

=&op= sup
!{0, ! # El

& f� l
= !&2

&!&2

. (3.4)

We will say that the distribution of = is super-smooth if the rotational
Fourier transform of f= satisfies

&( f� l
=)

&1&opEd &1
0 l &;0 exp(l ;�#) and

&( f� l
=)&opEd1 l ;1 exp(&l ;�#) as l � �, (3.5)

for some positive constants d0 , d1 , ;, #, constants ;0 and ;1 . We will say
that the distribution of = is (ordinary) smooth if the rotational Fourier
transform of f= satisfies

&( f� l
=)

&1&opEd &1
0 l ; and &( f� l

=)&opEd1 l &; as l � �, (3.6)

for some positive constants d0 , d1 and nonnegative constant ;. Examples
of smooth and super-smooth distributions will be discussed in Section 4.

3.2. Optimal Estimation

The empirical Fourier transform on S2 can be defined by

f� n, l
Z, q=

1
n

:
n

j=1

Y l
q(Zj), (3.7)
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which is an unbiased estimator of f� l
Z, q for &l�q�l and l=0, 1, ... . Then

by (3.3)

f� n, l
X, q=

1
n

:
n

j=1

:
l

s=&l

f� l
=&1, qsY l

s(Zj),

where &l�q�l, l=0, 1, ... and for ease of notation, we write f� l
=&1=

( f� l
=)

&1.
Choosing m=m(n) � � as n � � leads to the following nonparametric

deconvolution density estimator of fX on S 2,

f n
X (|)= :

m

l=0

:
l

q=&l {
1
n

:
n

j=1

:
l

s=&l

f� l
=&1, qs Y l

s(Z j)= Y l
q(|), (3.8)

where | # S2.
For statistical motivation, we can rewrite (3.8) in another way. Define

K =
n(|, &)= :

m

l=0

:
l

q, s=&l

Y l
q(|) f� l

=&1, qsY l
s(&),

where &, | # S 2. Then an alternative way of writing (3.8) is

f n
X (|)=

1
n

:
n

j=1

K =
n(|, Zj), (3.9)

where | # S2. Note that this resembles an ordinary kernel estimator in
Euclidean space.

We would like to present our main results in terms of Sobolev spaces.
Indeed, on the space C�(S 2) of infinitely continuous differentiable func-
tions on S 2, consider the so-called Sobolev norm & }&Hs

of order s defined
in the following way. For any function h=�l, q h� l

q Y l
q let

&h&2
Hs

=:
l, q

(1+l(l+1))s |h� l
q | 2. (3.10)

One can verify that (3.10) is indeed a norm. Denote by Hs(S 2) the (vector-
space) completion of C�(S2) with respect to (3.10), the Sobolev norm
of order s. For some fixed constant M>0, let Hs(S 2, M) denote the
smoothness class of functions h # Hs(S 2) which satisfy

&h&Hs
�1+M.
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Consider an unknown distribution Pf depending on the density function
f # Hs(S 2, M) and suppose [bn] is some sequence of positive numbers. This
sequence is called a lower bound for f if

lim
c � 0

lim inf
n

inf
f n

sup
f # Hs (S 2, M)

Pf (& f n& f &2�cbn)=1, (3.11)

where the infimum is over all possible estimators f n based on Z1 , ..., Zn .
Alternatively, the sequence in question is said to be an upper bound for f
if there is a sequence of estimators [ f n] such that

lim
c � �

lim sup
n

sup
f # Hs (S 2, M)

Pf (& f n& f &2�cbn)=0. (3.12)

The sequence of numbers [bn] is called the optimal rate of convergence for
f if it is both a lower bound and an upper bound with the associated
estimators [ f n, n�1], being called asymptotically optimal. These definitions
are in the sense of Stone (1980).

The following theorems state that the deconvolution density estimators
(3.9) are asymptotically optimal, where the minimax rates of convergence
depend on the smoothness characteristics of the error distribution.

We will use the following notation. For sequences [an] and [cn] of
positive numbers, let an<<cn mean that an �cn�C as n � �. When an<<cn

and cn<<an , we write an �� cn .

Theorem 3.1. Suppose f= is smooth. If fX # Hs(S2, M) for some s>1,
then

n&s�(2(s+;)+2)

is the optimal rate of convergence, where m �� n1�(2(s+;)+2).

Theorem 3.2. Suppose f= is super-smooth. If fX # Hs(S 2, M) for some
s>1, then

(log n)&s�;

is the optimal rate of convergence, where m �� (log n)1�;.

In Section 4, a discussion of some possible error distributions is presented,
however, at this point let us provide some general comments about the
extreme cases with respect to distribution of the errors =.

Indeed, at one extreme is the Haar measure (uniform distribution) on
SO(3) in which case deconvolution is not possible since f� l

==0 for all l>0.
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One can see this by the fact that the true measurements are uniformly
corrupted resulting in no hope of being able to recover fX .

If on the other hand we consider point mass at the unit element of
SO(3), i.e., $e , where e denotes the unit element in SO(3), then

f� l
==|

SO(3)
Dl (g) $e(g) dg=D l (e)=I2l+1 ,

where I& is the &_& identity matrix. Therefore & f� l
=&op=1 and this corre-

sponds to the smooth case with ;=0 where

K $e
n (|, &)= :

m

l=0

:
l

q=&l

Y l
q(|) Y l

q(&),

for &, | # S2. Consequently, in this case, (3.9) would be

f n
X (|)=

1
n

:
n

j=1

K $e
n (|, Zj), (3.13)

where | # S2 and (3.13) would be just ordinary nonparametric density
estimation on S2, since the observations are made without error. This fact
along with Theorem 3.1 provides the following corollary which states that
for rate of convergence for nonparametric density estimation on S2, the
rate obtained in Theorem 2.1 of Hendriks (1990, p. 834) is optimal.

Corollary 3.3. Suppose f==$e . If fX # Hs(S 2, M) for s>1 then

n&s�(2s+2)

is the optimal rate of convergence, where m �� n1�(2s+2) as n � �.

4. EXAMPLES OF SMOOTH AND SUPER-SMOOTH
DISTRIBUTIONS

In this section we will discuss three different error distributions with two
of them being smooth and one of them being super-smooth. All of these
distributions are characterized spectrally.

4.1. Rotational Laplace Distribution

This distribution is the rotational analogue of the Euclidean Laplace
(double exponential) distribution and is discussed in depth in Healy et al.
(1998). Although a closed form expression for SO(3) is available, see
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Theorem 3.5 in Healy et al. (1998), it's spectral version is much more
informative. Indeed in terms of the rotational harmonics,

f== :
l�0

:
l

q=&l

(1+_2l(l+1))&1 (2l+1) D l
qq , (4.1)

for some _2>0. Spectrally,

f� l
=, qj=(1+_2l(l+1))&1 $q j ,

for l=0, 1, ..., where $qj=1 if q= j and is 0 otherwise. As can be seen from
(4.1), this is an example of a smooth distribution with ;=2.

4.2. The Rosenthal Distribution

The next distribution comes from a problem in probability associated
with random walks on groups; see Diaconis (1988) and Rosenthal (1994).
Here one is interested in performing random walks on groups, followed by
establishing ways in which the measure converges to the uniform measure,
the so-called ``mixing''. In terms of the mathematical structure, each move-
ment in the random walk is represented by a convolution product. The
nature in which finite convolution products converges to the uniform
measure is analytically studied using Fourier methods on the group. The
case for SO(N) has been studied in Rosenthal (1994). Borrowing from his
work, we will consider the situation where f= is a p-fold convolution
product of conjugate invariant random measures for a fixed axis, where the
p>0 measures the degree of uniformly.

For SO(3) take the conjugacy class of

cos % &sin % 0

R%=_ sin % cos % 0& ,

0 0 1

for % # (0, ?], followed by taking the uniform measure over the conjugacy
class of R% . Let f= be the p-fold convolution product. Rosenthal (1994,
p. 407) shows that

f� l
=, qj=_ sin(l+1�2) %

(2l+1) sin %�2&
p

$qj ,

for &l�q, j�l, l=0, 1, ..., where 0<%�? and p>0. Since

} sin(l+1�2) %
(2l+1) sin %�2 }�

1
(2l+1) sin %�2
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TABLE I

Distribution Type and Rates of Convergence

Distribution Smoothness type Convergence rate

Laplace Smooth n&s�(2s+6)

Rosenthal Smooth n&s�(2s+2p+2)

Gaussian Super-smooth (log n)&s�2

whenever 0<%�? for l=0, 1, ..., then according to (3.6), f= is ordinary
smooth with ;= p. For SO(3) or any fixed SO(N), as the convolution
product index p � �, then

f=(g) dg � dg

in various metrics including L2.

4.3. Gaussian Distribution

The Gaussian distribution can be solved on general Riemannian
manifold by solving the appropriate heat equation. Since the D l

q1 , q2
are the

eigenfunctions of the Laplacian 2 on SO(3) with eigenvalue l(l+1)�2, for
&l�q�l, l=0, 1, ..., after taking account of the rotational symmetries, we
can write the distribution as

f== :
l�0

:
l

q=&l

exp(&tl(l+1))(2l+1) D l
qq , (4.2)

for t>0. Consequently,

f� l
=, qj=exp(&tl(l+1)) $qj ,

so that it is an example of a super-smooth distribution with #=1�t and
;=2.

4.4. Summary of Distributions

In Table I we summarize the above distributions along with their smooth-
ness properties. In addition, we state their optimal rate of convergence.

5. THE VON MISES�FISHER DISTRIBUTION

The most widely referenced distribution for directional data is the von
Mises�Fisher matrix distribution; see, for example, Khatri and Mardia
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(1977). Unlike the distributions of Section 4, this distribution is directly
expressed as

f=(g)(x)=c(}) exp(} tr g&1x), (5.1)

where }>0 is the concentration parameter around the mean rotation
g # SO(3) and tr denotes the trace operator; see Khatri and Mardia (1977).
To understand the nature of the smoothness of (5.1) we need to calculate
the rotational Fourier transform; however, prior to doing so, observe that
if g and } are known, then we can assume g=e, the unit element of SO(3).
This comes from the observation that

f=(g) V fX (|)= f=(e) V fX (g&1|), (5.2)

so that we can re-orient the estimation by g&1 and estimate the density
using f=(e) instead of f=(g) . Using results from the representation theory of
SO(3), in particular Schur's lemma and the Clebsch�Gordan formula, the
rotational Fourier coefficients of (5.1) can be calculated.

In Section 2, we state that [Dl: l=0, 1, ...] constitute a collection of
inequivalent irreducible representations of SO(3). Two consequences of this
fact are the following. First, suppose f: SO(3) � C is a class function, which
means that f (gxg&1)= f (x) for all x, g # SO(3). Then Schur's lemma, see
Bro� cker and tom Diek (1985), says that

f� l
qj=

$q j

(2l+1) |
SO(3)

f (g) /~ l (g) dg, (5.3)

where &l�q, j�l and /l=tr Dl are the irreducible characters of SO(3),
l=0, 1, 2, ..., in particular, the rotational Fourier transforms of class
functions are a constant multiple of the identity matrix. The second
property is that tensor products of irreducible representations, can be
decomposed as a direct sum, the so-called Clebsch�Gordan formula; see
Bro� cker and tom Diek (1985). Indeed,

Dk �Dl=D |k&l | �D |k&l |+1 � } } } �Dk+l, (5.4)

for all k, l=0, 1, ... . Now for the irreducible characters we have

/k } /l=/ |k&l |+/ |k&l | +1+ } } } +/k+l , (5.5)

for all k, l=0, 1, ... .
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We are now ready to discuss the rotational Fourier transform of (5.1).
Assume g=e as in (5.2). Note that f=(e) is a class function since it depends
on /l (x)=tr x. Hence by Schur's lemma we need to calculate

|
SO(3)

exp(} tr x) /� l (x) dx=|
SO(3)

exp(}/1(x)) /� l (x) dx

= :
�

k=0

}k

k ! |
SO(3)

(/1(x))k /� l (x) dx, (5.6)

for all l=0, 1, ... . By the Cauchy�Schwarz inequality, one can show that (5.6)
is bounded, hence taking the Taylor series expansion for the exponential
function and interchanging integration with summation is justified.

Now by the Clebsch�Gordan formula, we can write

/k
1= :

k

p=0

'p, k /p , (5.7)

where 'p, k�1 for p�0, k�1. The set of irreducible characters [/l : l=0,
1, ...], is a complete orthonormal basis for the space of square integrable
class functions hence

| /k
1 /� l='l, k , (5.8)

where k�l. Now applying Cauchy�Schwarz to (5.8) and noting that
|/1(g)|�/1(e)=3 for all g # SO(3), we conclude that

1�'l, k�3k, (5.9)

for all k�l and l=0, 1, 2, ... . The immediate result is that when we apply
(5.9) to (5.6), then

c(}) }l

(2l+1) l !
� f� l

=(e), qq�
2c(})(3})l

(2l+1) l !
, (5.10)

for &l�q�l as l � �. The upper bound uses the fact that

exp(x)& :
n&1

j=0

x j�j !�2xn�n !

for 0<x<n�2.
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Our interest is when l � �, hence we can apply Stirlings approximation
to (5.10) so that

c(})(}�e) l

- 2? (2l+1)
exp(&(l+1�2) log l )

� f� l
=(e), qq�

2c(})(3}�e)l

- 2? (2l+1)
exp(&(l+1�2) log l ), (5.11)

as l � � for }>0.
One can see that with the appearance of the logarithm term in the expo-

nent of (5.11), we cannot get the same value for ; on both sides of (5.11).
The consequence is that the von Mises�Fisher distribution is somewhat
anomalous in that

&( f� l
=)

&1&opEd &1
0 l 3�2 exp(l 1+;�#) and

&( f� l
=)&opEd1 l &3�2 exp(&l�#) as l � �, (5.12)

for some positive constants ;, d0 , d1 , and #, hence it is smoother than
super-smooth.

We have the following result.

Corollary 5.1. Suppose f= is distributed according to the von Mises�
Fisher distribution. If fX # Hs(S 2, M) for some s>1, then

(log n)&s

is a lower bound rate of convergence, while

(log n)&s�(1+;)

is an upper bound rate of convergence for any ;>0, as n � �.

As an aside, it has long been known in the directional statistics literature
that the von Mises�Fisher distribution although close, is not the same as
the Gaussian distribution. The calculations of this section along with
Section 4.3 show exactly the nature of the difference between the von Mises�
Fisher and Gaussian distributions. As l � �, the characteristic function of
the Gaussian and the von Mises�Fisher distributions behave like

exp(&tl 2) and exp(&l log l ),

respectively for some t>0. Clearly, the Gaussian distribution has slightly
smoother tails which therefore accounts for a slower (but not by much)
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rate of convergence for the deconvolution density estimator relative to the
von Mises�Fisher rotational errors.

6. PROOFS

We will prove Theorem 3.1 and Theorem 3.2 by first finding upper
bounds for the smooth and super-smooth cases. Following this we will
establish lower bounds for these smoothness classes and demonstrate that
the upper and lower bounds match so that the resulting bounds are
optimal.

The approach of Healy et al. (1998) will be used for calculating the
upper bounds, while the approach of Koo (1993) and Koo and Chung
(1998) will be used to find the lower bounds.

Forthwith, let M, M1 , M2 , ... denote positive constants independent of
the sample size n and let C denote a positive constant which may have a
different value at each of its appearances.

6.1. Upper Bounds

Let & f &� denote the L� norm of a function on S2.

Lemma 6.1. If h # Hs(S 2, M ) with s>1, then

&h&��C(M, s),

where C(M, s) is a constant depending only on M and s.

Proof. Write h=�l, q h� l
q Y l

q . Observe that

|h(|)|2�\:
l, q

(1+l(l+1))s |h� l
q |2+\:

l, q

(1+l(l+1))&s |Y l
q(|)|2+

�(1+M ) :
l

(1+l(l+1))&s (2l+1)�(4?).

In the above, we use the addition formula,

:
l

q=&l

Y� l
q(|) Y l

q(&)=
2l+1

4?
Pl (cos #(|, &)), (6.1)

where #(|, &) represents the angle between &, | # S 2 and P l (1)=1
are the Legendre polynomials, for all l�0. Since s>1, the series
�l (1+l(l+1))&s (2l+1) is convergent. K
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Lemma 6.2. Suppose fX # Hs(S2, M ) with s>1. Then

|
| # S2

Var( f n
X (|)) d|<<{m2;+2n&1

exp(2m;�#) m&2;0+2n&1

smooth
super-smooth

as n � �.

Proof. We note that

Var( f n
X (|))=

1
n

Var(K =
n(|, Z))�

1
n

EK =
n(|, Z) K =

n(|, Z),

for | # S2, where Z denotes the random S 2 element =X. By Lemma 6.1 and
(3.2), fZ is bounded by a constant C so that

|
S 2

K =
n(|, z) K =

n(|, z) fZ(z) dz�C |
S 2

K =
n(|, z) K =

n(|, z) ds

= :
m

l=0

:
l

s=&l } :
l

q=&l

Y l
q(|) f� l

=&1, qs }
2

.

Define

`|(&)= :
l

q=&l

Y l
q(|) Y� l

q(&),

where |, & # S 2. Then

:
l

s=&l } :
l

q=&l

Y l
q(|) f� l

=&1, qs }
2

=& f� l
=&1 `|&2

2

�& f� l
=&1 &2

op &`|&2
2

=& f� l
=&1 &2

op :
l

q=&l

|Y l
q(|)|2

The second line uses the operator inequality (3.4), the third line uses
Parseval's identity, while the last line uses the addition formula (6.1) along
with the fact that Pl (1)=1. Therefore, we have

|
S 2

Var( f n
X (|)) d|�

C
n

:
m

l=0

& f� l
=&1 &2

op (2l+1).

Now apply the definitions of smooth and super-smooth to the last
expression. K
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Lemma 6.3. Suppose fX # Hs(S2, M ), where s>1. Then

& fX&Ef n
X &2

2<<m&2s.

Proof. Observe that

FX (|)&Ef n
X (|)= :

l>m

:
l

q=&l

f� l
X, q Y l

q(|).

Since

m2s & fX&Ef n
X&2

2 =m2s :
l>m

:
l

q=&l

| f� l
X, q |2

� :
l>m

:
l

q=&l

(1+l(l+1))s | f� l
X, q |2�(1+M )

we have the desired result. K

By putting together Lemma 6.2 and Lemma 6.3, upper bound estimates
can be established as

E & f n
X& fX&2

2<<{m2;+2n&1+m&2s

exp(2m;�#) m&2;0+2n&1+m&2s

smooth
super-smooth

as n � �. Consequently, choosing

m �� {n1�2(s+;+1)

(log n)1�;

smooth
super-smooth

as n � � optimizes the upper bound rates, respectively.

6.2. Lower Bounds

To show that the upper bound rates are optimal rates, we calculate
lower bound rates of convergence and show that these are the same as the
upper bounds. In calculating the lower bounds we follow the popular
approach:

v specify a subproblem;

v use Fano's lemma to calculate the difficulty of the subproblem.

Let Nn be a positive integer depending on n and define

Vn=[(l, q): q=0, 1, ..., l, l=Nn+1, ..., 2Nn].
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Define

(Y l
q+Y l

&q)�- 2 if q>0 is even

� l
q={Y l

0 if q=0

(Y l
q&Y l

&q)�- 2 if q>0 is odd

for (l, q) # Vn . Since Y l
q =(&1)q Y l

&q , � l
q is a real-valued function for each

(l, q) # Vn . Let {={(n)=[{ l
q : (l, q) # Vn] and consider the function

f{=(4?)&1�2+M1N &s&1
n :

2Nn

l=Nn+1

:
l

q=&l

{ l
q� l

q , (6.2)

where M1 is a positive constant such that 3(7s) M 2
1�M. Finally, let

Fn=[ f{ : { # [0, 1] |Vn|], (6.3)

where for some given finite set, | } | will denote it's cardinality and assume
that Nn � � as n � �. Under the assumption that s>1, we have the
following lemma.

Lemma 6.4. For n sufficiently large, Fn /Hs(S2, M ) and M &1
2 �f�M2

for all f # Fn .

Proof. Let

{ l
q �- 2 if q>0

{~ l
q={{ l

0 if q=0

(&1)q { l
q �- 2 if q<0.

Then

:
l

q=0

{ l
q� l

q= :
l

q=&l

{~ l
qY l

q .

Using this fact and applying the Sobolev norm to (6.2), we get

& f{&2
Hs

=1+M 2
1N &2s&2

n :
2Nn

l=Nn+1

:
l

q=&l

({~ l
q)2 (1+l(l+1))s

�1+M 2
1N &2s&2

n :
2Nn

l=Nn+1

(l+1)(1+l)(1+l(l+1))s

�1+7sM 2
1N &2

n :
2Nn

l=NN+1

(l+1)

�1+3(7s) M 2
1 . (6.4)
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Consequently, we have shown that f{ # Hs(S2, M). Since s>1, we have the
desired result. K

Now let f, g # Fn with f{ g. By the orthonormality of � l
q , we have

& f& g&2�M1N &s&1
n . (6.5)

It follows from (6.5) and Lemma 3.1 of Koo (1993) that there exists an
F0

n /Fn such that for all u, v # F0
n with u{v,

&u&v&2�M3 N &s
n and log( |F0

n |&1)�M4 N 2
n . (6.6)

Define

$#u&v=M1 N &s&1
n :

2Nn

l=Nn+1

:
l

q=&l

{~ l
q Y l

q .

Then

& f= V $&2
2 = :

2Nn

l=Nn+1

:
l

q=&l

|( f= V $@ ) l
q | 2

=M 2
1 N&2(s+1) :

2Nn

l=Nn+1

:
l

q=&l } :
l

j=&1

f� l
=, q j{~

l
j }

2

�M 2
1 N&2(s+1) :

2Nn

l=Nn+1

& f� l
=&2

op :
l

q=&l

|{~ l
j |

2

�M 2
1 N&2(s+1) :

2Nn

l=Nn+1

& f� l
=&2

op (l+1).

The first inequality above is obtained by the operator inequality, (3.4),
while the last line uses the definition of {~ . This therefore implies that

& f= V u& f= V v&2
2<<{N &2(s+;)

n

exp(&2N ;
n �#) N &2s+2;1

n

smooth
super-smooth

(6.7)

as n � �.
By (3.2) and Lemma 6.4, we have

M&1
2 � f= V f{�M2 . (6.8)
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Now the Kullback�Leibler information divergence D( f & g) between two
densities f and g is defined by D( f & g)=�S 2 f log( f�g) and

D( f= V f & f= V g)�|
S 2

( f= V f& f= V g)2

f= V g
. (6.9)

Therefore, by (6.7), (6.8) and Jensen's inequality

D( f= V u & f= V v)<<{N &2(s+;)
n

exp(&2N ;
n �#) N &2s+2;1

n

smooth
super-smooth

(6.10)

for all u, v # F0
n , as n � �.

By Fano's lemma, see, for example, Birge� (1983), Yatrocos (1988), or
Koo (1993), if f n is any estimator of f, then

sup
f # Hs (S2, M)

Pf (& f n& f &2>cN &s
n )� sup

f # F
0
n

Pf (& f n& f &2>cN &s
n )

�1&
nD( f= V u & f= V v)+log 2

log( |F0
n |&1)

. (6.11)

Apply (6.6) and (6.10) to the last line in (6.11). Finally, let

Nn �� {n1�2(s+;+1)

(log n)1�;

smooth
super-smooth

as n � �. Then it follows for the two smoothness classes that

lim
c � 0

lim inf
n

sup
f # Hs(S 2, M)

Pf (& f n& f &>cN &s
n )=1,

thus establishing the lower bound.
We can now use these lower bounds along with the upper bound results

which then completes the proofs to Theorem 3.1 and Theorem 3.2.
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