Spectral Bounds for Certain Two-Factor Non-Reversible MCMC Algorithms

by

Jeffrey S. Rosenthal and Peter Rosenthal

Departments of Statistics and Mathematics, University of Toronto

(August, 2015; revised November 2015)

Abstract

We prove that the Markov operator corresponding to the two-variable, non-reversible Gibbs sampler has spectrum which is entirely real and non-negative, thus providing a first step towards the spectral analysis of MCMC algorithms in the non-reversible case. We also provide an extension to Metropolis-Hastings components, and connect the spectrum of an algorithm to the spectrum of its marginal chain.

1 Introduction

This paper is inspired by the earlier paper [23], which discusses the importance of real, non-negative spectra for MCMC algorithms, and proves this property for several different reversible cases. In this paper, we extend that result to some common *non*-reversible MCMC algorithms, as we shall explain.

Markov chain Monte Carlo (MCMC) algorithms, such as the Gibbs sampler [9, 8] and the Metropolis-Hastings algorithm [16, 10, 26], are an extremely active area of modern research, with applications to numerous areas (see e.g. [3] and the references therein). Much of the mathematical analysis of these algorithms centers around their convergence rate; i.e., how long they need to be run before they produce accurate samples from the designated target probability distribution (cf. [20]). Some of this analysis uses probabilistic techniques such as coupling and minorisation conditions (e.g. [21, 4]). However, much of the analysis involves considering the spectrum of the associated Markov operator (see Section 2.2). In such cases, the Markov operator is nearly always assumed to be self-adjoint, corresponding to the Markov chain being reversible (see e.g. [13, 24, 6, 5, 12]). The paradigm used is then roughly as follows:

- 1. Since the Markov operator is self-adjoint, its spectrum must be *real* (not complex), and can often be shown (or forced) to be non-negative, cf. [23].
- 2. The corresponding *spectral gap* can then be bounded away from zero using various techniques (Cheeger's inequality, quadratic forms, etc.).
- **3.** These spectral gap bounds then imply bounds on the operator's norm, which in turn lead to bounds on the Markov chain's convergence rate.

However, if the Markov chain is *not* reversible, then much of this paradigm breaks down (though the spectral radius formula is still of some relevance to step 3 above; see Section 2.2 below), and the analysis becomes much more difficult (see e.g. [17]). Some authors have attempted to get around this difficulty by *replacing* the non-reversible Markov chain by its "reversibilisation" [7], or by some other chain which provably has the same convergence properties [19]. However, there has been very little success at directly investigating the spectral properties of non-reversible Markov chains themselves, despite the fact that many commonly used MCMC algorithms (such as the systematic-scan Gibbs sampler) are not reversible and thus not amenable to the above paradigm.

In this paper, we make a small start in this direction. We consider one of the simplest common classes of non-reversible MCMC algorithms; namely, those which are a product of two factors each of which is a reversible Markov chain. In particular, we consider the two-variable systematic-scan Gibbs sampler, and prove step 1 of the above paradigm; i.e., that a Markov operator corresponding to such a sampler must have spectrum which is real and non-negative (Theorem 1). This implies (Corollary 2) that the corresponding auto-covariances are also non-negative. We also consider a combination of a Metropolis-Hastings component and a Gibbs Sampler component, and prove that the corresponding spectrum must still be real in that case (Theorem 3). Finally, we consider the relationship between the spectra of certain (non-reversible) systematic scan chains, and their corresponding (reversible) marginal chains (Theorem 5). We hope that these results will lead to further efforts to extend the above spectral analysis paradigm to non-reversible Markov chains.

2 Background

We begin with some background needed for our results.

2.1 Markov Chain

A (time-homogeneous) Markov chain on a measurable space $(\mathcal{X}, \mathcal{F})$ has a Markov kernel $P: \mathcal{X} \times \mathcal{F} \to [0,1]$, where P(x,A) represents the probability that, if the chain begins in the state $x \in \mathcal{X}$, it will then "move" to a state in $A \in \mathcal{F}$ on the next iteration. Formally, for each fixed $x \in \mathcal{X}$, the mapping $A \mapsto P(x,A)$ is a probability measure on $(\mathcal{X},\mathcal{F})$, and for each fixed $A \in \mathcal{F}$, the mapping $x \mapsto P(x,A)$ is a measurable function on \mathcal{X} . A sequence of \mathcal{X} -valued random variables X_0, X_1, X_2, \ldots is a Markov chain following the transitions P if for any $n \geq 0$ and all $A \in \mathcal{F}$, $\mathbf{Prob}[X_{n+1} \in A \mid X_0, X_1, \ldots, X_n] = P(X_n, A)$.

In the case of MCMC algorithms, there is always a fixed probability measure π on $(\mathcal{X}, \mathcal{F})$ which is *stationary* for P, meaning that $(\pi P)(A) := \int_{x \in \mathcal{X}} \pi(dx) P(x, A) = \pi(A)$ for all $A \in \mathcal{F}$. Under mild conditions, if the Markov chain is run repeatedly, then it will *converge in distribution* to π . Indeed, this is the main motivation for MCMC algorithms, and indeed the *speed* of this convergence is of great importance (see e.g. [20]).

One condition which guarantees that π is stationary for P is that the Markov chain is reversible with respect to π ; i.e., that $\pi(dx) P(x, dy) = \pi(dy) P(y, dx)$ for all $x, y \in \mathcal{X}$.

2.2 Markov Operator

Such a Markov kernel P can also be viewed as a linear operator (see e.g. [22] for basic facts about operators), which acts on functions $f: \mathcal{X} \to \mathbf{C}$ by

$$(Pf)(x) := \int_{y \in \mathcal{X}} f(y) P(x, dy),$$

so that (Pf)(x) is the conditional expected value of f when the Markov chain takes one step starting at x.

The stationary probability measure π gives rise to an inner product $\langle f, g \rangle = \int_{x \in \mathcal{X}} f(x) \, \overline{g(x)} \, \pi(dx)$ and norm $||f|| = \sqrt{\langle f, f \rangle}$ on the Hilbert space

$$L^{2}(\pi) := \{f : \mathcal{X} \to \mathbf{C}; \int_{x \in \mathcal{X}} |f(x)|^{2} \pi(dx) < \infty \}.$$

Then P acts on $L^2(\pi)$, and indeed it is easily seen (e.g. [2]) that we always have $||Pf|| \le ||f||$; i.e., $||P|| \le 1$; i.e., P is a (weak) contraction on $L^2(\pi)$. Similar comments also apply to P acting on the subspace

$$L_0^2(\pi) := \{ f : \mathcal{X} \to \mathbf{C}; \ f \in L^2(\pi), \ \int_{x \in \mathcal{X}} f(x) \, \pi(dx) = 0 \},$$

which is more directly related to MCMC convergence (since it avoids the specific eigenvalue 1 for constant functions, corresponding to the fact that $\pi P = \pi$ since π is a stationary distribution). The operator P is also related to the *auto-covariance* of the chain, which is important in understanding the accuracy of MCMC samplers (see e.g. [15]). Indeed, for $f: \mathcal{X} \to \mathbf{R}$,

$$\langle P^k f, f \rangle = \int_{x \in \mathcal{X}} P^k f(x) f(x) \pi(dx) = \int_{x \in \mathcal{X}} \int_{y \in \mathcal{X}} f(y) P^k(x, dy) f(x) \pi(dx)$$
$$= \mathbf{E}[f(X_k) f(X_0)] = \mathbf{Cov}[f(X_k), f(X_0)],$$

where the expected value **E** is taken with respect to a Markov chain $\{X_n\}$ started in stationary and following the transitions P.

It is easily seen that P is reversible if and only if the operator P is self-adjoint; i.e., $\langle Pf,g\rangle=\langle f,Pg\rangle$ for all $f,g\in L^2(\pi)$. An operator P is positive if it is self-adjoint and also $\langle Pf,f\rangle\geq 0$ for all $f\in L^2(\pi)$. Any positive operator has a unique positive square-root; i.e., a positive operator $S:=P^{1/2}$ with $S^2=P$.

The spectrum of the operator P is defined, as usual, by

$$\sigma(P) := \{ \lambda \in \mathbb{C}; (\lambda I - P) \text{ is not invertible} \}.$$

(Here I is the identity operator on $L^2(\pi)$, and "invertible" means having an inverse within the class of all bounded (i.e., continuous) linear operators on $L^2(\pi)$.) The corresponding spectral radius is $r(P) = \sup\{|z|; z \in \sigma(P)\}$. Since $||P|| \le 1$, it follows that $r(P) \le 1$. In general, $\sigma(P)$ consists of complex numbers. However, for self-adjoint operators (corresponding to reversible Markov chains), the spectrum is well-known to contain only real numbers. And, for positive operators, the spectrum is also non-negative; i.e., contained in $[0, \infty)$.

It turns out (see e.g. [18]) that in the MCMC context, the spectral radius r(P) for the operator P on $L_0^2(\pi)$ is of great importance to convergence rates. In the reversible case, this is because $r(P)^n$ then equals the operator norm $\|P^n\|$, and hence provides direct bounds on $\|P^nf\|$ for $f \in L_0^2(\pi)$. For example, if $f(x) = \mathbf{1}_A(x) - \pi(A)$, then $f \in L_0^2(\pi)$, and $\|f\| \le 1$, and $(P^nf)(x) = P^n(x,A) - \pi(A)$, so $\int_{x \in \mathcal{X}} |P^n(x,A) - \pi(A)|^2 \pi(dx) \le \|P^n\| \le r(P)^n$. In the non-reversible case, that bound does not hold; however by the spectral radius formula (e.g. [22], Theorem 10.13) we still have $r(P) = \lim_{n \to \infty} \|P^n\|^{1/n}$, so the bound still holds asymptotically in this sense.

2.3 Gibbs Sampler

Suppose now that $(\mathcal{X}, \mathcal{F}) = (\mathcal{X}_1, \mathcal{F}_1) \times (\mathcal{X}_2, \mathcal{F}_2) \times \ldots \times (\mathcal{X}_d, \mathcal{F}_d)$ is a d-fold product measurable space, and that λ_i is some σ -finite reference measure on $(\mathcal{X}_i, \mathcal{F}_i)$ for each i. (The most common case is where each λ_i equals Lebesgue measure on $\mathcal{X}_i = \mathbf{R}$.) Suppose further that the stationary probability distribution π has a density ϕ with respect to λ ; i.e., $\pi \ll \lambda$ with $\frac{d\pi}{d\lambda} = \phi$. Then the ith component $Gibbs\ sampler$ is the Markov kernel G_i which leaves all coordinates besides i unchanged, and replaces the ith coordinate by a draw from the full

conditional distribution of π conditional on all the other components. That is, for $x \in \mathcal{X}$ and $A_i \in \mathcal{F}_i$, if

$$S_{x,i,A_i} := \{ y \in \mathcal{X}; \ y_i = x_j \text{ for } j \neq i, \text{ and } y_i \in A_i \},$$

then

$$G_i(x, S_{x,i,A_i}) = \frac{\int_{t \in A_i} \phi(x_1, \dots, x_{i-1}, t, x_{i+1}, \dots, x_n) \lambda_i(dt)}{\int_{t \in \mathcal{X}_i} \phi(x_1, \dots, x_{i-1}, t, x_{i+1}, \dots, x_n) \lambda_i(dt)}.$$

These single-component Gibbs samplers G_i are easily seen to be reversible Markov chains corresponding to self-adjoint operators. In fact, they are projection operators, i.e. $(G_i)^2 = G_i$, so their spectra consist entirely of the values 0 and 1, and in particular their spectra are real and non-negative.

The single-component Gibbs samplers G_i are then combined together to form a complete MCMC algorithm P. There are two main ways of doing this. The first is the systematic-scan Gibbs sampler, defined by $P = G_1G_2 \dots G_d$, corresponding to cycling through all of the different coordinates in order. The second is the random-scan Gibbs sampler, defined by $\frac{1}{d}(G_1 + G_2 + \dots + G_d)$, corresponding to choosing a coordinate uniformly at random and updating that coordinate only. Now, it is easily seen that the random-scan Gibbs sampler is reversible, so that its spectrum can be analysed in various ways (see e.g. [23]). However, the systematic-scan Gibbs sampler is more commonly used in applications, and it is definitely not reversible. (For example, if d = 2 and the support of π is an "L" shape, then with G_1G_2 it is possible to move from the lower-right corner to the upper-left corner, but not to move the other way.)

In this paper, we focus on the two-variable systematic-scan Gibbs sampler; i.e., the case where d=2 and $P=G_1G_2$ (equivalent to the *data augmentation* algorithm introduced in [25]), which is arguably the simplest common non-reversible MCMC algorithm.

2.4 Metropolis-Hastings Algorithm

Let $d, \mathcal{X}_i, \mathcal{F}_i, \lambda_i, \phi$ be as above. When some of the Gibbs sampler kernels G_i cannot be feasibly implemented, practitioners sometimes instead use *Metropolis-Hastings* components, defined as follows. Let Q_i be an arbitrary Markov kernel on \mathcal{X} which leaves all coordinates besides the i^{th} one unchanged; i.e., such that in the above notation $Q_i(S_{x,i,\mathcal{X}_i}) = 1$. Assume that $Q_i(x,\cdot)$ has a density $q_{i,x}(t)$ with respect to λ_i , in the sense that

$$Q_i(x, S_{x,i,A_i}) = \int_{t \in A_i} q_{i,x}(t) \lambda_i(dt).$$

Then the i^{th} component Metropolis-Hastings algorithm is the Markov kernel M_i corresponding to "proposing" a new state $y \in \mathcal{X}$ according to Q_i , and then accepting this new state with probability $\alpha_i(x;y) := \min(1, \frac{\phi(y) q_{i,y}(x_i)}{\phi(x) q_{i,x}(y_i)})$, otherwise with probability $1 - \alpha_i(x,y)$ the new state is rejected so the Markov chain remains at the state x. In terms of Markov operators, writing $x[i,t] := (x_1, \dots, x_{i-1}, t, x_{i+1}, \dots, x_d)$, this corresponds to setting

$$(M_i f)(x) = r(x) f(x) + \int_{t \in \mathcal{X}_i} q_{i,x}(t) \alpha_i(x, x[i, t]) f(x[i, t]) \lambda_i(dt),$$

where $r(x) = 1 - \int_{t \in \mathcal{X}_i} q_{i,x}(t) \alpha_i(x,x[i,t]) \lambda_i(dt)$ is the overall probability of rejecting the proposal.

Now, the acceptance probabilities $\alpha_i(x, y)$ have been chosen precisely (see e.g. [26, 20]) to ensure that each kernel M_i is reversible with respect to π , so π is stationary for M_i . Hence, the operator M_i is self-adjoint, though it might not be a positive operator.

Remark. It is also possible to define a full-dimensional Metropolis-Hastings algorithm, which acts on all components simultaneously. In the above notation, that corresponds to the case d = 1; i.e., to letting \mathcal{X}_1 be the entire state space and setting $P = M_1$. This approach is quite common, though we do not pursue it here.

3 Main Results

In terms of the above background, our first main result is as follows.

Theorem 1. Consider a two-variable systematic-scan Gibbs sampler $P = G_1G_2$ as above (or any other product $P = G_1G_2$ for any positive Markov operators G_1 and G_2). Then the spectrum of P is real and non-negative, with $\sigma(P) \subseteq [0,1]$.

As discussed in the Introduction, this theorem extends step 1 of the reversible Markov chain paradigm to a non-reversible case.

Then, since $\langle P^k f, f \rangle = \mathbf{Cov}[f(X_k), f(X_0)]$ for real-valued f as noted above, it follows immediately that:

Corollary 2. Let $\{X_n\}$ be a random sequence started in stationary and following the transitions $P = G_1G_2$ of a two-variable systematic-scan Gibbs sampler as above. Then for any real-valued $f \in L^2(\pi)$ and $k \in \mathbb{N}$, $\mathbf{Cov}[f(X_k), f(X_0)] \geq 0$.

We also consider the case of a combination of a Gibbs sampler component and a Metropolis-Hastings component, as follows.

Theorem 3. Consider a two-variable systematic-scan combination of a Metropolis-Hastings component and a Gibbs sampler component, of the form $P = M_1G_2$ or $P = G_1M_2$, with G_i and M_i as above (or any other positive Markov operator G_i and any other reversible Markov operator M_i). Then the spectrum of P is real, with $\sigma(P) \subseteq [-1, 1]$.

4 Proofs of Main Results

Our proofs rely on the following known operator theory facts, following [11].

Proposition 4. (i) Let A and B be two self-adjoint operators on a Hilbert space \mathcal{H} , with B positive. Then the spectra of the product operators AB and BA are equal and real; i.e., $\sigma(AB) = \sigma(BA) \subseteq \mathbf{R}$.

(ii) If, in addition to the above, A is also positive, then the spectra of the product operators are non-negative; i.e., $\sigma(AB) = \sigma(BA) \subseteq [0, \infty)$.

Proof. By Proposition 1 of [11], $\sigma(AB) = \sigma(BA) = \sigma(SAS)$, where $S = B^{1/2}$ is the (unique) positive square root of the operator B (see Appendix for a discussion of the proof from [11]). But SAS is self-adjoint by inspection. Hence, $\sigma(AB) = \sigma(BA) = \sigma(SAS) \subseteq \mathbf{R}$, proving (i). Furthermore, if A is also positive, then $\langle SASf, f \rangle = \langle ASf, Sf \rangle \geq 0$ by the positivity of A, so that $\sigma(AB) = \sigma(SAS) \subseteq [0, \infty)$, proving (ii).

Proof of Theorem 1. Applying Proposition 4(ii) with $A = G_1$ and $B = G_2$ shows that $\sigma(P) = \sigma(G_1G_2) \subseteq [0, \infty)$. But we know that $r(P) \leq 1$, whence $\sigma(P) \subseteq [0, 1]$, as claimed.

Remark. Theorem 1 does not extend directly to Gibbs samplers with d > 2 coordinates. Indeed, we have checked numerically that if $\mathcal{X} = \{1,2\}^3$, with $\pi(i,j,k) \propto i+j+k$, then the corresponding three-variable systematic-scan Gibbs sampler has non-real eigenvalues $0.0002515 \pm 0.0014018 i$, among others. Indeed, it is well-known (see [1]) that even Proposition 4 does not extend to three operators. Daniel Rosenthal has pointed out a simple example: if

 $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \text{ and } C = \begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix},$

then A and B and C are each positive matrices, but the product ABC has complex eigenvalues $\frac{1}{2} (10 + i \pm \sqrt{75 + 20i})$.

Proof of Theorem 3. Applying Proposition 4(i) with $A = M_1$ and $B = G_2$ shows that $\sigma(M_1G_2) \subseteq \mathbf{R}$, or with $A = M_2$ and $B = G_1$ shows that $\sigma(G_1M_2) \subseteq \mathbf{R}$, so either way we have $\sigma(P) \subseteq \mathbf{R}$. But we know that $r(P) \leq 1$, whence $\sigma(P) \subseteq [-1, 1]$, as claimed.

5 The Marginal Chain

We now consider the connection between the spectrum of P, and the spectrum of the marginal chain \widetilde{P} , defined as follows.

For the two-variable systematic-scan Gibbs sampler $P = G_1G_2$, the Markov chain proceeds by first (via G_1) "replacing" the first coordinate by a fresh value depending only on the second coordinate. This means that P(x,A) does not depend on the first coordinate of x; i.e., $P((y,x_2),A) = P((z,x_2),A)$ for all $y,z \in \mathcal{X}_1$. Hence, also the function Pf depends only on x_2 . That in turn implies the existence of a "marginal" Markov chain which only keeps track of the second coordinate; i.e., which has state space $(\mathcal{X}_2,\mathcal{F}_2)$, and transition kernel \widetilde{P} defined by $\widetilde{P}(x_2,A_2) = P(x,\{(y_1,y_2) \in \mathcal{X};y_2 \in A_2\})$ for $x_2 \in \mathcal{X}_2$ and $A_2 \in \mathcal{F}_2$. (Usually, a function of a Markov chain will not itself be a Markov chain, but rather a hidden Markov model.) In this case, it turns out [15, 18, 12] that \widetilde{P} is reversible with respect to the marginal distribution of π on \mathcal{X}_2 , defined by $\widetilde{\pi}(A_2) = \pi\{(x_1,x_2) \in \mathcal{X};x_2 \in A_2\}$, and furthermore the convergence rate of \widetilde{P} to $\widetilde{\pi}$ is identical to the convergence rate of P to π . So, that provides a different avenue to studying convergence of two-variable Gibbs samplers, using the methodology of reversible chains.

The above facts for the two-variable Gibbs sampler also extend ([14], Section 2.4) to the case $P = G_1 M_2$ of a combination of a Gibbs sampler component followed by a Metropolis-Hastings component; i.e., it also has a marginal chain \tilde{P} which is reversible with respect to $\tilde{\pi}$ with the same convergence rate.

The identical convergence rates of the full and the marginal chain in these cases suggest that there might be a connection between their spectra. Indeed, we have the following.

Theorem 5. Let $P = G_1G_2$ or $P = G_1M_2$ as above, and let \widetilde{P} be the corresponding (reversible) marginal chain as above. Then $\sigma(P) = \sigma(\widetilde{P}) \cup \{0\}$; i.e., P and \widetilde{P} have identical (real) spectra except perhaps for $\lambda = 0$.

To prove Theorem 5, we require another operator theory result.

Proposition 6. Let A be an operator on a Hilbert space \mathcal{H} . Suppose \mathcal{M} is a proper closed linear subspace of \mathcal{H} which contains the range of A; i.e., such that $Af \in \mathcal{M}$ whenever $f \in \mathcal{H}$. Let B be the restriction of A to \mathcal{M} ; i.e., $B = A|_{\mathcal{M}}$. Then $\sigma(A) = \sigma(B) \cup \{0\}$.

Proof. Let $\mathcal{M}^{\perp} = \{ f \in \mathcal{H}; \langle f, g \rangle = 0 \ \forall g \in \mathcal{M} \}$ be the subspace of functions "perpendicular" to \mathcal{M} . Then the entire space \mathcal{H} can be written as the direct sum $\mathcal{M} \oplus \mathcal{M}^{\perp}$. Hence any operator D can be decomposed in block-matrix form as

$$D = \left(\begin{array}{c|c} D_{11} & D_{12} \\ \hline D_{21} & D_{22} \end{array}\right)$$

meaning that $D(f_1 \oplus f_2) = (D_{11}f_1 + D_{12}f_2) \oplus (D_{21}f_1 + D_{22}f_2)$. With respect to this decomposition, we must have (since \mathcal{M} contains the range of A) that

$$A = \left(\begin{array}{c|c} B & C \\ \hline \mathbf{0} & \mathbf{0} \end{array}\right)$$

for some operator $C: \mathcal{M}^{\perp} \to \mathcal{M}$. Then

$$\lambda I - A = \left(\begin{array}{c|c} \lambda I_{\mathcal{M}} - B & -C \\ \hline \mathbf{0} & \lambda I_{\mathcal{M}^{\perp}} \end{array} \right)$$

where $I_{\mathcal{M}}$ and $I_{\mathcal{M}^{\perp}}$ are the identity operators on \mathcal{M} and \mathcal{M}^{\perp} respectively. Now, if $\lambda \neq 0$ and $\lambda \notin \sigma(B)$, then it can be checked directly that

$$(\lambda I - A)^{-1} = \left(\frac{(\lambda I_{\mathcal{M}} - B)^{-1} \mid X}{\mathbf{0} \mid \lambda^{-1} I_{\mathcal{M}^{\perp}}} \right),$$

where $X = (\lambda I_{\mathcal{M}} - B)^{-1}C(\lambda^{-1}I_{\mathcal{M}^{\perp}})$. So, $\lambda I - A$ is invertible, and hence $\lambda \notin \sigma(A)$. This shows that $\sigma(A) \subseteq \sigma(B) \cup \{0\}$.

Also, since range(A) $\subseteq \mathcal{M}$, A is not surjective, and therefore $0 \in \sigma(A)$.

Finally, suppose $\lambda \notin \sigma(A)$. Then $(\lambda I - A)$ has an inverse, of the form

$$(\lambda I - A)^{-1} = \left(\begin{array}{c|c} W & X \\ \hline Y & Z \end{array} \right).$$

Then

$$I = (\lambda I - A)(\lambda I - A)^{-1} = \left(\begin{array}{c|c} (\lambda I_{\mathcal{M}} - B)W - CY & (\lambda I_{\mathcal{M}} - B)X - CZ \\ \hline \lambda Y & \lambda Z \end{array} \right).$$

It follows that $\lambda Y = \mathbf{0}$, so $Y = \mathbf{0}$ (since $\lambda \notin \sigma(A)$ so $\lambda \neq 0$). It then follows that $(\lambda I_{\mathcal{M}} - B)W - CY = I_{\mathcal{M}}$; i.e., that $(\lambda I_{\mathcal{M}} - B)W = I_{\mathcal{M}}$. Also,

$$I = (\lambda I - A)^{-1}(\lambda I - A) = \left(\frac{W(\lambda I_{\mathcal{M}} - B) \mid WC - \lambda X}{\lambda Y - YB \mid YC - Z}\right),$$

from which it follows that $W(\lambda I_{\mathcal{M}} - B) = I_{\mathcal{M}}$. Combining these two facts, $(\lambda I_{\mathcal{M}} - B)W = W(\lambda I_{\mathcal{M}} - B) = I_{\mathcal{M}}$, so $(\lambda I_{\mathcal{M}} - B)$ is invertible (with inverse W). Hence, $\lambda \notin \sigma(B)$. This

Proof of Theorem 5. Let \mathcal{J} be the set of all functions which depend only on the second coordinate; i.e., $\mathcal{J} = \{f \in L^2(\pi); f(x_1, x_2) = g(x_2) \ \forall x_1 \in \mathcal{X}_1 \text{ and } x_2 \in \mathcal{X}_2, \text{ for some } g : \mathcal{X}_2 \to \mathbf{C}\}$. Then as discussed above, due to the nature of P we must have $Pf \in \mathcal{J}$ for all $f \in L^2(\pi)$. Hence, we can apply Proposition 6 with A = P and $\mathcal{M} = \mathcal{J}$, to obtain that $\sigma(P) = \sigma(P|_{\mathcal{J}}) \cup \{0\}$.

But $P|_{\mathcal{J}}$ is essentially the same as \widetilde{P} : if $f \in \mathcal{J}$, with $f(x_1, x_2) = g(x_2)$ for all x_1 and x_2 , then $(\widetilde{P}g)(x_2) = (Pf)(x_1, x_2)$. More formally, let $\widetilde{\mathcal{J}} = L^2(\widetilde{\pi})$ be the collection of square-integrable functions on \mathcal{X}_2 , and x_* be any fixed element of \mathcal{X}_1 , and define $S : \widetilde{\mathcal{J}} \to \mathcal{J}$ by $(Sf)(x_2) = f(x_*, x_2)$, with inverse $S^{-1} : \mathcal{J} \to \widetilde{\mathcal{J}}$ by $(S^{-1}g)(x_1, x_2) = g(x_2)$. Then $\widetilde{P} = S^{-1}P|_{\mathcal{J}}S$, so \widetilde{P} is similar to $P|_{\mathcal{J}}$. In particular, $\sigma(\widetilde{P}) = \sigma(P|_{\mathcal{J}})$. The result follows.

Remark. It is known that for the two-variable systematic-scan Gibbs sampler $P = G_1G_2$, the marginal chain is positive and thus has positive spectrum [15]; and for the combined chain $P = G_1M_2$, the marginal chain is reversible and thus has real spectrum [14]. Using this, Theorem 5 in turn provides an alternative proof of Theorems 1 and 3 – though it also strengthens them by providing a specific description (of sorts) of the spectra $\sigma(P)$ in those two cases.

6 A Self-Contained Operator Theory Proof

Our Proposition 4 above, which is essential to the proofs of Theorems 1 and 3, makes heavy use of Proposition 1 of [11]. The corresponding proof presented in [11] is brief, but it relies on several other operator theory concepts and theorems, and hence is not easily accessible to non-experts. For completeness, we provide here a self-contained proof, following [11].

Proposition 7. ([11]) Let A and B be two self-adjoint operators on a Hilbert space \mathcal{H} , with B positive. Let $S := B^{1/2}$ be the (unique) positive square root of B. Then $\sigma(AB) = \sigma(BA) = \sigma(SAS)$.

We prove this Proposition using a few simple lemmas. The first was proved by Nathan Jacobson years ago; James Fulford has pointed out that there is a nice discussion of this topic at [27].

Lemma 8. For any operators C and D on a Hilbert space \mathcal{H} , the spectra $\sigma(CD)$ and $\sigma(DC)$ differ by at most $\{0\}$; i.e., if $\lambda \in \mathbf{C}$ and $\lambda \neq 0$, then $\lambda \in \sigma(CD)$ if and only if $\lambda \in \sigma(DC)$.

Proof. By replacing C by C/λ , it suffices to assume that $\lambda = 1$. Thus, it suffices to prove that I - DC is invertible if and only if I - CD is invertible. But this follows from the identity

$$(I - DC)^{-1} = I + D(I - CD)^{-1}C$$
,

which can be verified by multiplying $I + D(I - CD)^{-1}C$ by I - DC (on either the left or the right side) and getting the result I.

Remark. The displayed identity in the proof of Lemma 8 is suggested intuitively (see e.g. [27]) by substituting in the (unjustified) expansions

$$(I-CD)^{-1} = \frac{1}{1-CD} = 1+CD+(CD)^2+(CD)^3+\dots$$

and

$$(I - DC)^{-1} = \frac{1}{1 - DC} = 1 + DC + (DC)^2 + (DC)^3 + \dots$$

Lemma 9. For any operators C and D on a Hilbert space \mathcal{H} , if D is self-adjoint, and CD is invertible, then C and D and DC are each invertible.

Proof. Since CD is invertible, it must be injective; i.e., if $f \neq 0$ then $(CD)f \neq 0$. Hence also $Df \neq 0$. So, D is also injective.

Then, since CD is invertible, so is its adjoint $(CD)^*$. In particular, its adjoint must be surjective; i.e., for each $g \in \mathcal{H}$ there is $f \in \mathcal{H}$ with $(CD)^*f = g$. But $(CD)^* = D^*C^* = DC^*$ since D is self-adjoint. So, $D(C^*f) = g$. Hence, D is also surjective.

Thus, D is both injective and surjective, and hence invertible as a linear mapping $\mathcal{H} \to \mathcal{H}$. It then follows from the Open Mapping Theorem (see e.g. Corollary 2.12(b) on page 49 of [22]) that its inverse is a continuous (i.e., bounded) linear operator; i.e., D is invertible as a bounded linear operator on \mathcal{H} .

The remaining claims then follow from the fact that the product of invertible operators is invertible.

Corollary 10. ([11]) For any operators C and D on a Hilbert space \mathcal{H} , if D is self-adjoint, then $\sigma(CD) = \sigma(DC)$.

Proof. Lemma 8 above shows that $\sigma(CD)$ and $\sigma(DC)$ agree except possibly for the value 0, and Lemma 9 shows that $0 \in \sigma(CD)$ if and only if $0 \in \sigma(DC)$.

Proof of Proposition 7. The first equality follows directly from Corollary 10. The second equality also follows from Corollary 10, by noting that $\sigma(AB) = \sigma(AS^2) = \sigma((AS)S) = \sigma(S(AS))$ since S is also self-adjoint.

References

- [1] C.S. Ballantine (1968), Products of positive definite matrices. II. Pacific J. Math. 24(1), 7–17.
- [2] J.R. Baxter and J.S. Rosenthal (1995), Rates of convergence for everywhere-positive Markov chains. Stat. Prob. Lett. 22, 333–338.
- [3] S. Brooks, A. Gelman, G.L. Jones, and X.-L. Meng, eds. (2011), Handbook of Markov chain Monte Carlo. Chapman & Hall / CRC Press.
- [4] R. Douc, E. Moulines, and J.S. Rosenthal (2004), Quantitative bounds on convergence of time-inhomogeneous Markov chains. Ann. Appl. Prob. 14, 1643–1665.
- [5] P. Diaconis and L. Saloff-Coste (1993), Comparison theorems for reversible Markov chains. Ann. Appl. Prob. 3, 696-730.
- [6] P. Diaconis and D.W. Stroock (1991), Geometric bounds for reversible Markov chains. Ann. Appl. Prob. 1, 36–61.
- [7] J.A. Fill (1991), Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process. Ann. Appl. Prob. 1, 64–87.
- [8] A.E. Gelfand and A.F.M. Smith (1990), Sampling based approaches to calculating marginal densities. J. Amer. Stat. Assoc. 85, 398–409.
- [9] S. Geman and D. Geman (1984), Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. on pattern analysis and machine intelligence 6, 721–741.
- [10] W.K. Hastings (1970), Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109.
- [11] M. Hladnik and M. Omladic (1988), Spectrum of the product of operators. Proc. Am. Math. Soc. 102(2), 300–302.
- [12] J.P. Hobert, V. Roy, and C.P. Robert (2011), Improving the Convergence Properties of the Data Augmentation Algorithm, with an Application to Bayesian Mixture Modeling. Statistical Science **26(3)**, 332-351.
- [13] M. Jerrum and A. Sinclair (1989), Approximating the permanent. SIAM J. Comput. 18, 1149-1178.
- [14] G.L. Jones, G.O. Roberts, and J.S. Rosenthal (2014), Convergence of conditional Metropolis-Hastings samplers. Adv. Appl. Prob. **46(2)**, 422–445.
- [15] J.S. Liu, W. Wong, and A. Kong (1994), Covariance structure of the Gibbs sampler, with applications to the comparisons of estimators and augmentation schemes. Biometrika 81, 27– 40.
- [16] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953), Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091.
- [17] A. Mira and C.J. Geyer (2000), On non-reversible Markov chains, Fields Institute Communications 26: Monte Carlo Methods, pp. 95–110.
- [18] G.O. Roberts and J.S. Rosenthal (1997), Geometric ergodicity and hybrid Markov chains. Elec. Comm. Prob. 2, 13–25.

- [19] G.O. Roberts and J.S. Rosenthal (2001), Markov chains and de-initialising processes. Scand. J. Stat. 28, 489–504.
- [20] G.O. Roberts and J.S. Rosenthal (2004), General state space Markov chains and MCMC algorithms. Prob. Surv. 1, 20–71.
- [21] J.S. Rosenthal (1995), Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Stat. Assoc. 90, 558–566.
- [22] W. Rudin (1991), Functional Analysis, 2nd ed. McGraw-Hill, New York.
- [23] D. Rudolf and M. Ullrich (2012), Positivity of hit-and-run and related algorithms. Elec. Comm. Prob. 18, 1–8.
- [24] A. Sinclair (1992), Improved bounds for mixing rates of Markov chains and multicommodity flow. Combinatorics, Prob., Comput. 1, 351–370.
- [25] M.A. Tanner and W.H. Wong (1987), The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Stat. Assoc. 82, 528-550.
- [26] L. Tierney (1994), Markov chains for exploring posterior distributions (with discussion). Ann. Stat. 22, 1701–1762.
- [27] Q. Yuan (2012), ab, ba, and the spectrum. Blog post, available at: https://qchu.wordpress.com/2012/06/05/ab-ba-and-the-spectrum/