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Abstract Simulated tempering is popular method of

allowing MCMC algorithms to move between modes

of a multimodal target density π. One problem with

simulated tempering for multimodal targets is that the

weights of the various modes change for different inverse-

temperature values, sometimes dramatically so. In this

paper, we provide a fix to overcome this problem, by

adjusting the mode weights to be preserved (i.e., con-

stant) over different inverse-temperature settings. We

then apply simulated tempering algorithms to multi-

modal targets using our mode weight correction. We

present simulations in which our weight-preserving al-

gorithm mixes between modes much more successfully

than traditional tempering algorithms. We also prove

a diffusion limit for an version of our algorithm, which

shows that under appropriate assumptions, our algo-
rithm mixes in time O(d[log d]2).
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1 Introduction

Consider the problem of drawing samples from a tar-

get distribution, π(x) on a d-dimensional state space X
where π(·) is only known up to a scaling constant. A

popular approach is to use Markov chain Monte Carlo

(MCMC) which uses a Markov chain that is designed in

such a way that the invariant distribution of the chain

is π(·).
However, if π(·) exhibits multimodality, then the

majority of MCMC algorithms which use tuned localised

proposal mechanisms, e.g. Roberts et al. [1997] and

Roberts and Rosenthal [2001], fail to explore the state

space, which leads to biased samples. Two approaches

to overcome this multimodality issue are the simulated

and parallel tempering algorithms. These methods aug-

ment the state space with auxiliary target distributions

that enable the chain to rapidly traverse the entire state

space.

The major problem with these auxiliary targets is

that in general they don’t preserve regional mass, see

Woodard et al. [2009a], Woodard et al. [2009b] and

Bhatnagar and Randall [2016]. This problem can result

in the required run-time of the simulated and parallel

tempering algorithms growing exponentially with the

dimensionality of the problem.

In this paper, we provide a fix to overcome this prob-

lem, by adjusting the mode weights to be preserved

(i.e., constant) over different inverse-temperatures. We

apply our mode weight correction to produce new simu-

lated and parallel tempering algorithms for multimodal

target distributions. We show that, assuming the chain
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mixes at the hottest temperature, our mode-preserving

algorithm will mix well for the original target as well.

This paper is organised as follows. Section 2 reviews

the simulated and parallel tempering algorithms and

the existing literature for their optimal setup. Section 3

describes the problems with modal weight preservation

that are inherent with the traditional approaches to

tempering, and introduces a prototype solution called

the HAT algorithm that is similar to the parallel tem-

pering algorithm but uses novel auxiliary targets. Sec-

tion 4 presents some simulation studies of the new al-

gorithms. Section 5 provides a theoretical analysis of

a diffusion limit and the resulting computational com-

plexity of the HAT algorithm in high dimensions. Sec-

tion 6 concludes and provides a discussion of further

work.

2 Tempering Algorithms

There is an array of methodology available to over-

come the issues of multimodality in MCMC, the ma-

jority of which use state space augmentation e.g. Wang

and Swendsen [1990], Geyer [1991], Marinari and Parisi

[1992], Neal [1996], Kou et al. [2006], Nemeth et al.

[2017]. Auxiliary distributions that allow a Markov chain

to explore the entirety of the state space are targeted,

and their mixing information is then passed on to aid

inter-modal mixing in the desired target. A convenient

approach for augmentation methods, such as the pop-

ular simulated tempering (ST) and parallel tempering

(PT) algorithms introduced in Geyer [1991] and Mari-

nari and Parisi [1992], is to use power-tempered target

distributions, for which the target distribution at in-

verse temperature level β is defined as

πβ(x) ∝ [π(x)]
β

for β ∈ (0, 1]. For each algorithm one needs to choose a

sequence of n+1 “inverse temperatures” such that ∆ :=

{β0, . . . , βn} where 0 ≤ βn < βn−1 < . . . < β1 < β0 =

1, so that πβ0
equals the original target density π, and

hopefully the hottest distribution πβn(x) is sufficiently

flat that it can be easily sampled.

The ST algorithm augments the original state space

with a single dimensional component indicating the cur-

rent inverse temperature level creating a (d + 1) - di-

mensional chain, (β,X), defined on the extended state

space {β0, . . . , βn} × X that targets

π(β, x) ∝ K(β)π(x)β (1)

where ideally K(β) =
[∫
x
π(x)βdx

]−1
, resulting in a

uniform marginal distribution over the temperature com-

ponent of the chain. Techniques to learn K(β) exist

in the literature, e.g. Wang and Landau [2001] and

Atchadé and Liu [2004], but these techniques can be

misleading unless used with care. The ST algorithm

procedure is given in Algorithm 1.

Algorithm 1 The Simulated Tempering (ST) Algo-

rithm
Initialisation: A temperature schedule ∆; initialising chain

value, (βT 0 , x0); a within temperature proposal mecha-
nism, qβ(x, ·); s, the number of algorithm iterations and
m, the number of within-temperature proposals.

1: function ST(∆,x0, β0)
2: for i← 1 to s do
3: t ← (i− 1) + (i− 1)(m+ 1)
4: w ← Unif{−1, 1}
5: T

′ ← T t+w
6: Compute:

A = min

(
1,
K(βT ′ )π(xt)βT ′

K(βT t)π(xt)βTt

)
. (2)

7: Sample U ∼ Unif(0, 1)
8: if U ≤ A then
9: (βT t+1 , xt+1) ← (βT ′ , x

t)
10: else
11: (βT t+1 , xt+1) ← (βT t , x

t)
12: end if
13: Perform m updates to the X -marginal according

to qβTt+1 (x, ·) to get {xt+2, . . . , xt+m+1}.
14: end for
15: return {(βT 0 , x0), (βT 1 , x1), . . . , (βT s+s(m+1) , xs+s(m+1))}
16: end function

The PT approach is designed to overcome the is-

sues arising due to the typically unknown marginal nor-

malisation constants. The PT algorithm runs a Markov
chain on an augmented state space X (n+1) with target

distribution defined as

πn(x0, x1, . . . , xn) ∝ πβ0
(x0)πβ1

(x1) . . . πβn(xn).

The PT algorithm procedure is given in Algorithm 2.

2.1 Optimal Scaling for the ST and PT Algorithms

Atchadé et al. [2011] and Roberts and Rosenthal [2014]

investigated the problem of selecting optimal inverse-

temperature spacings for the ST and PT algorithms.

Specifically, if a move between two consecutive tem-

perature levels, β and β′ = β + ε, is to be proposed,

then what is the optimal choice of ε? Too large, and

the move will probably be rejected; too small, and the

move will accomplish little (similar to the situation for

the Metropolis algorithm, cf. Roberts et al. [1997] and

Roberts and Rosenthal [2001]).

For ease of analysis, Atchadé et al. [2011] and Roberts

and Rosenthal [2014] restrict to d-dimensional target



Weight-Preserving Simulated Tempering 3

Algorithm 2 The Parallel Tempering (PT) Algorithm

Initialisation: A temperature schedule ∆; initialising chain
values, X0 = {x00, x01, . . . , x0n}; a within temperature pro-
posal mechanism, qβ(x, ·); s, the number of algorithm it-
erations and m, the number of within-temperature pro-
posals.

1: function PT(∆,X0)
2: for i← 1 to s do
3: t ← (i− 1) + (i− 1)(m+ 1)
4: Sample k uniformly from {0, 1, . . . , (n− 1)}
5: Compute:

A = min

(
1,
πβk+1

(xtk)πβk (xtk+1)

πβk (xtk)πβk+1
(xtk+1)

)
. (3)

6: Sample U ∼ Unif(0, 1)
7: if U ≤ A then
8: Xt+1 ← {xt0, . . . , xtk+1, x

t
k, . . . , x

t
n}

9: else
10: Xt+1 ← Xt

11: end if
12: for p← 0 to n do
13: m updates to the pth-marginal chain according

to qβp(x, ·) to get {xt+2
p , . . . , xt+m+1

p }.
14: end for
15: end for
16: return {X0, X1, . . . , Xs+s(m+1)}
17: end function

distributions of the iid form:

π(x) ∝
d∏
i=1

f(xi). (4)

They assume that the process mixes immediately (i.e.,

infinitely quickly) within each temperature, to allow

them to concentrate solely on the mixing of the inverse-

temperature process itself. To achieve non-degeneracy

of the limiting behaviour of the inverse-temperature

process as d→∞, the spacings are scaled as O(d−1/2),

i.e. ε = `/d1/2 where ` = `(β) a positive value to be

chosen optimally.

Under these assumptions, Atchadé et al. [2011] and

Roberts and Rosenthal [2014] prove that the inverse-

temperature processes of the ST and PT algorithms

converge, when speeded up by a factor of d, to a spe-

cific diffusion limit, independent of dimension, which

thus mixes in time O(1), implying that the original ST

and PT algorithms mix in time O(d) as d → ∞. They

also prove that the mixing times of the ST and PT al-

gorithms are optimised when the value of ` is chosen to

maximise the quantity

`2 × 2Φ

(
−`
√
I(β)

2

)

where I(β) = Varπβ
(

log f(x)
)
. Furthermore, this op-

timal choice of ` corresponds to an acceptance rate of

inverse-temperature moves of 0.234 (to three decimal

places), similar to the earlier Metropolis algorithm re-

sults of Roberts et al. [1997] and Roberts and Rosenthal

[2001].

From a practical perspective, setting up the tem-

perature levels to achieve optimality can be done via a

stochastic approximation approach (Robbins and Monro

[1951]), similarly to Miasojedow et al. [2013] who use

an adaptive MCMC framework (see e.g. Roberts and

Rosenthal [2009]).

2.2 Torpid Mixing of ST and PT Algorithms

The above optimal scaling results suggest that the mix-

ing time of the ST and PT algorithms through the tem-

perature schedule is O(d), i.e. grows only linearly with

the dimension of the problem, which is very promis-

ing. However, this optimal, non-degenerate scaling was

derived under the assumption of immediate, infinitely

fast within-temperature mixing, which is almost cer-

tainly violated in any real application. Indeed, this as-

sumption appears to be overly strong once one con-

siders the contrasting results regarding the scalability

of the ST algorithm from Woodard et al. [2009a] and

Woodard et al. [2009b]. Their approach instead relies

on a detailed analysis of the spectral gap of the ST

Markov chain and how it behaves asymptotically in di-

mension. They show that in cases where the different

modal structures/scalings are distinct, this can lead to

mixing times that grow exponentially in dimension, and

one can only hope to attain polynomial mixing times

in special cases where the modes are all symmetric.

The fundamental issue with the ST/PT approaches

are that in cases where the modes are not symmetric,

the tempered targets do not preserve the regional/modal

weights. That motivates the current work, which is de-

signed to preserve the modal weights even when per-

forming tempering transformations, as we discuss next.

Interestingly, a lack of modal symmetry in the mul-

timodal target will affect essentially all the standard

multimodal focused methods: the Equi-Energy Sampler

of Kou et al. [2006], the Tempered Transitions of Neal

[1996], and the Mode Jumping Proposals of Tjelmeland

and Hegstad [2001], all suffer in this setting. Hence, the

work in this paper is applicable beyond the immediate

setting of the ST/PT approaches.
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3 Weight Stabilised Tempering

In this section, we present our modifications which pre-

serve the weights of the different modes when perform-

ing tempering transformations. We first motivate our

algorithm by considering mixtures of Gaussian distri-

butions.

Consider a d-dimensional bimodal Gaussian target

distribution with means, covariance matrices and weights

given by µi, Σi, wi for i = 1, 2 respectively. Hence the

target density is given by:

π(x) = w1φ(x, µ1, Σ1) + w2φ(x, µ2, Σ2), (5)

where φ(x, µ,Σ) is the pdf of a multivariate Gaussian

with mean µ and covariance matrix Σ. Assuming the

modes are well-separated then the power tempered tar-

get from (1) can be approximated by a bimodal Gaus-

sian mixture (cf. Woodard et al. [2009b], Tawn [2017]):

π(x) = W(1,β)φ

(
x, µ1,

Σ1

β

)
+W(2,β)φ

(
x, µ2,

Σ2

β

)
,(6)

where the weights are approximated as

W(i,β) =
wβi |Σi|

1−β
2

wβ1 |Σ1|
1−β
2 + wβ2 |Σ2|

1−β
2

∝ wβi |Σi|
1−β
2 . (7)

A one-dimensional example of this is illustrated in

Figure 1, which shows plots of a bimodal Gaussian mix-

ture distribution as β → 0. Clearly the second mode,

which was originally wide but very short and hence of

low weight, takes on larger and larger weight as β → 0,

thus distorting the problem and making it very diffi-

cult for a tempering algorithm to move from the second

mode to the first when β is small.

Higher dimensionality makes this weight-distorting

issue exponentially worse. Consider the situation with

w1 = w2 but Σ1 = Id and Σ2 = σ2Id where Id is the

d× d identity matrix. Then

W(2,β)

W(1,β)
≈ σd(1−β), (8)

so the ratio of the weights degenerates exponentially

fast in the dimensionality of the problem for a fixed

β. This heuristic result in (8) shows that between lev-

els there can be a “phase-transition” in the location of

probability mass, which becomes critical as dimension-

ality increases.

3.1 Weight Stabilised Gaussian Mixture Targets

Consider targeting a Gaussian mixture given by

π(x) ∝
J∑
j=1

wjφ(x, µj , Σj) (9)
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Fig. 1 Power-tempered target densities of a bimodal
Gaussian mixture using inverse temperature levels β =
{1, 0.1, 0.05, 0.005} respectively. At the hot state it is evident
that the mode centred on 40 begins to dominate the weight
as β →∞.

in the (practically unrealistic) setting where the target

is a Gaussian mixture with known parameters, includ-

ing the weights. By only tempering the variance com-

ponent of the modes, one can spread out the modes

whilst preserving the component weights. We formalise

this notion as follows:

Definition 1 (Weight-Stabilised Gaussian Mixture

(WSGM)) For a Gaussian mixture target distribution

π(·), as in (9), the weight-stabilised Gaussian mixture

(WSGM) target at inverse temperature level β is de-

fined as

πWS
β (x) ∝

J∑
j=1

wjφ

(
x, µj ,

Σj
β

)
. (10)

Figure 2 shows the comparison between the target

distributions used when using power-based targets vs

the WSGM targets for the example from Figure 1.

Using these WSGM targets in the PT scheme can

give substantially better performance than when using

the standard power based targets. This is very clearly

illustrated in the simulation study section below in Sec-

tion 4.1. Henceforth, when the term “WSGM ST/PT

Algorithm” is used it refers to the implementation of

the standard ST/PT algorithm but now using the WSGM

targets from (10).

3.2 Approximating the WSGM Targets

In practice, the actual target distribution would be non-

Gaussian, and only approximated by a Gaussian mix-

ture target. On the other hand, due to the improved
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Fig. 2 For a bimodal Gaussian mixture target, plots of the
normalised tempered target densities generated by both pow-
ering the target (black) and the WSGM targets (red) at in-
verse temperature levels β = {1, 0.1, 0.05, 0.005}.

performance gained from using the WSGM over just

targeting the respective power-tempered mixture, there

is motivation to approximate the WSGM in the prac-

tical setting where parameters are unknown. To this

end, we present a theorem establishing useful equiva-

lent forms of the WSGM; these alternative equivalent

forms give rise to a practically applicable approxima-

tion to the WSGM.

To establish the notation, let the target be a mixture

distribution given by

π(x) ∝
J∑
j=1

hj(x) =

J∑
j=1

wjgj(x) (11)

where gj(x) is a normalised target density. Then set

πβ(x) ∝
J∑
j=1

fj(x, β) =

J∑
j=1

W(j,β)
[gj(x)]β∫
[gj(x)]βdx

. (12)

Then we have the following result, proved in the Ap-

pendix.

Theorem 1 (WSGM Equivalences) Consider the

setting of (11) and (12) where the mixture components

consist of multivariate Gaussian distributions i.e. gj(x) =

φ(x;µj , Σj). Then ∀j ∈ 1, . . . , J

(a) [Standard, non-weight-preserving tempering]

If fj(x, β) = [hj(x)]β then

W(j,β) ∝ wβj |Σj |
1−β
2 .

(b) [Weight-preserving tempering, version #1]

Denoting ∇j = ∇ log hj(x) and ∇2
j = ∇2 log hj(x);

if fj(x, β) takes the form

hj(x) exp

{(
1− β

2

)
(∇j(x))T

[
∇2
j (x)

]−1∇j(x)

}
.

then W(j,β) ∝ wj.
(c) [Weight-preserving tempering, version #2]

If

fj(x, β) = hj(x)βhj(µj)
(1−β)

then W(j,β) ∝ wj.

Remark 1: In Theorem 1, statement (b) shows that

second order gradient information of the hj ’s can be

used to preserve the component weight in this setting.

Remark 2: Statement (c) extends statement (b) to

no longer require the gradient information about the

hj but simply the mode/mean point µj . Essentially

this shows that by appropriately rescaling according

to the height of the component as the components are

“powered up” then component weights are preserved

in this setting.

Remark 3: A simple calculation shows that

statement (c) holds for a more general mixture setting

when all components of the mixture share a common

distribution but different location and scale

parameters.

3.3 Hessian Adjusted Tempering

The results of Theorem 1 are derived under the imprac-

tical setting that the components are all known and

that π(·) is indeed a mixture target. One would like to

exploit the results of (b) and (c) from Theorem 1 to aid

mixing in a practical setting where the target form is

unknown but may be well approximated by a mixture.

Suppose herein that the modes of the multimodal

target of interest, π(·), are well separated. Thus an ap-

proximating mixture of the form given in (11) would

approximately satisfy

π(x) ∝ hM (x)

where M = supj {hj(x)}. Hence it is tempting to apply

a version of Theorem 1(b) to π(·) directly as opposed

to the hj . So at inverse temperature β, the point-wise

target would be proportional to

π(x) exp

{(
1− β

2

)
(∇π(x))T

[
∇2
π(x)

]−1∇π(x)

}
.

where ∇π = ∇ log π(x) and ∇2
π = ∇2 (log π(x)). This

only uses point-wise gradient information up to second
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order. At many locations in the state space, provided

that β is at a temperature level that is sufficiently cool

that the tail overlap is insignificant, and if the tar-

get was indeed a Gaussian mixture then this approach

would give almost exactly the same evaluations as πβ(·)
from (12) in the setting of (b). However, at locations

between modes when the Hessian of log(π(x)) is posi-

tive semi-definite, this target behaves very badly, with

explosion points that make it improper.

Instead, under the setting of well separated modes

then one can appeal instead to the weight preserving

characterisation in Theorem 1(c). Assume that one can

assign each location in the state space to a “mode point”

via some function x→ µx,β , with a corresponding tem-

pered target given by

πβ(x) ∝ π(x)βπ(µx,β)1−β .

Note the mode assignment function’s dependence on β.

This can be understood to be necessary by appealing to

Figure 2 where it is clear that the narrow mode in the

WSGM target has a “basin of attraction” that expands

as the temperature increases.

Definition 2 (Basic Hessian Adjusted Temper-

ing (BHAT) Target) For a target distribution π(·) on

Rd with a corresponding “mode point assigning func-

tion” µx,β : Rd → Rd; the BHAT target at inverse

temperature level β ∈ (0,∞) is defined as

πBHβ (x) ∝ π(x)βπ(µx,β)1−β . (13)

However, in this basic form there is an issue with

this target distribution at hot temperatures when β →
0. The problem is that it leaves discontinuities that

can grow exponentially large and this can make the

hot state temperature level mixing exponentially slow

if using standard MCMC methods for the within tem-

perature moves.

This problem can be mitigated if one assumes more

knowledge about the target distribution. Suppose that

the mode points are known and so there is a collection

of K mode points M = {µ1, . . . , µK}. This assumption

seems quite strong but in general if one cannot find

mode points then this is essentially saying that one can-

not find the basins of attraction and thus the desire to

obtain the modal relative masses (as MCMC is trying to

do) must be relatively impossible. Indeed, being able to

find mode points either prior to or online in the run of

the algorithm is possible e.g. Tjelmeland and Hegstad

[2001], Behrens [2008] and Tawn et al. [2018]. Further-

more, assume that the target, π(·), is C2 in a neighbour-

hood of the K mode locations and so there is an asso-

ciated collection of positive definite covariance matri-

ces S = {Σ1, . . . , ΣK} where Σj = −
(
∇2 log π(µj)

)−1
.

From this and knowing the evaluations of π(·) at the

mode points then one can approximate the weights in

the regions to attain a collection Ŵ = {ŵ1, . . . , ŵK}
where

ŵj =
π(µj)|Σj |1/2∑K
k=1 π(µk)|Σk|1/2

With φ(·|µj , Σj) denoting the pdf of a N(µj , Σj)

then we define the following modal assignment function

motivated by the WSGM:

Definition 3 (WSGM mode assignment function)

With collections M , S and Ŵ specified above then for

a location x ∈ Rd and inverse temperature β define the

WSGM mode assignment function as

A(x, β) = arg max
j

{
ŵjφ

(
x|µj ,

Σj
β

)}
. (14)

Under the assumption that there are collections M ,

S and Ŵ that have either been found through prior

optimisation or through an adaptive online approach

we define the following:

Definition 4 (Hessian Adjusted Tempering (HAT)

Target) For a target distribution π(·) on Rd with col-

lections M , S and Ŵ defined above along with the as-

sociated mode assignment function given in (14), then

the Hessian adjusted tempering (HAT) target is defined

as

πHβ (x) ∝

{
π(x)βπ(µA(x,β))

1−β if A(x, β) = A(x, 1)

G(x, β) if A(x, β) 6= A(x, 1)

(15)

where with Â := A(x, β)

G(x, β) =
π(µÂ)

(
(2π)dΣÂ

)1/2
φ
(
x|µÂ,

ΣÂ
β

)
βd/2

.

Essentially the function “G” specifies the target dis-

tribution when the chain’s location, x, is in a part of

the state space where the narrower modes expand their

basins of attraction as the temperature gets hotter.

Both the choice of G and the mode assignment func-

tion used in Definition 4 are somewhat canonical to the

Gaussian mixture setting. With the same assignment

function specified in Definition 3, an alternative and

seemingly robust “G” that one could use is given by

G(x, β) = π(x, 1, A)

+

(
2P (A(x, β))

P (A(x, β)) + P (A(x, 1))
− 1

)
[π(x, β,A)− π(x, 1, A)]

where π(x, β,A) = π(x)βπ(µA(x,β))
1−β and P (j) =

ŵjφ
(
x|µj , Σjβ

)
.
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With either of the suggested forms of the function G

then under the assumption that the target is continuous

and bounded on Rd, and that for all β ∈ (0,∞),∫
X
πβ(x)dx <∞ ,

then πHβ (x) is a well defined probability density, i.e.

Definition 4 makes sense.

For a bimodal Gaussian mixture example Figure 3

compares the HAT target relative to the WSGM tar-

get; showing that the HAT targets are a very good ap-

proximation to the WSGM targets, even at the hotter

temperature levels.
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Fig. 3 For the same bimodal Gaussian target from Figure 2,
here is a comparison of the HAT vs WSGM targets at inverse
temperatures β = 0.05 and β = 0.005 respectively. Note they
are almost identical at the colder temperature; but they do
differ slightly in the interval (−25, 10) at the hotter temper-
ature where the “G” function is allowing the footprint of the
narrow mode to expand.

We propose to use the HAT targets in place of the

power-based targets for the tempering algorithms given

in Section 2. We thus define the following algorithms,

which are explored in the following sections.

Definition 5 (Hessian Adjusted Simulated Tem-

pering (HAST) Algorithm) The HAST algorithm

is an implementation of the ST algorithm (Section 2,

Algorithm 1) where the target distribution at inverse

temperature level β is given by πHβ (·) from Definition 4.

Definition 6 (Hessian Adjusted (Parallel) Tem-

pering (HAT) Algorithm) The HAT algorithm is an

implementation of the PT algorithm (Section 2, Algo-

rithm 2) where the target distribution at inverse tem-

perature level β is given by πHβ (·) from Definition 4.

4 Simulation Studies

4.1 WSGM Algorithm Simulation Study

We begin by comparing the performances of a ST al-

gorithm targeting both the power-based and WSGM

targets for a simple but challenging bimodal Gaussian

mixture target example. The example will illustrate

that the traditional ST algorithm, using power-based

targets, struggles to mix effectively through the tem-

perature levels due to a bottleneck effect caused by the

lack of regional weight preservation.

The example considered is the 10-dimensional target

distribution given by the bi-modal Gaussian mixture

π(x) = w1φ(µ1,Σ1)(x) + w2φ(µ2,Σ2)(x) (16)

where w1 = 0.2, w2 = 0.8, µ1 = (−10,−10, . . . ,−10),

µ2 = (10, 10, . . . , 10), Σ1 = 9I10 and Σ2 = I10. When

power based tempering is used, then mode 1 accounts

for only 20% of the mass at the cold level, but at the

hotter temperature levels becomes the dominant mode

containing almost all the mass.

For both runs the same geometric temperature sched-

ule was used:

∆ = {1, 0.32, 0.322, . . . , 0.326}.

This geometric schedule is justified by Corollary 1 of

Tawn and Roberts [2018], which suggests this is an op-

timal setup in the case of a regionally weight preserved

PT setting. Indeed, this schedule induces a swap move

acceptance rates around 0.22 for the WSGM algorithm;

close to the suggested 0.234 optimal value.

This temperature schedule gave swap acceptance

rates of approximately 0.23 between all levels of the

power-based ST algorithm except for the coldest level

swap where this degenerated to 0.17. That shows that

the power-based ST algorithm was set up essentially op-

timally according to the results in Atchadé et al. [2011].

In order to ensure that the within-mode mixing isn’t

influencing the temperature space mixing, a local modal

independence sampler was used for the within-mode

moves. This essentially means that once a mode has

been found, the mixing is infinitely fast. We use the

modal assignment function µx,β which specifies that the

location x is in mode 1 if x̄ < 0 and in mode 2 other-

wise. Then the within-move proposal distribution for a

move at inverse temperature level β is given by

qβ(x, y) = φ(µ1,
Σ1
β )(y)1x̄<0 + φ(µ2,

Σ2
β )(y)1x̄≥0, (17)

where φµ,Σ(.) is the density function of a Gaussian ran-

dom variable with mean µ and variance matrix Σ.
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Figure 4 plots a functional of the inverse tempera-

ture at each iteration of the algorithm. The functional

is

h(βt, xt) :=
log
(

βt
βmin

)
log
(

1
βmin

) sgn (x̄t) (18)

where sgn(.) is the usual sign function and βmin is the

minimum of the inverse temperatures. The significance

of this functional will become evident from the results

of the core theoretical contributions made in this paper

in Theorems 2 and 3 in Section 5. Essentially it is taking

a transformation of the current inverse temperature at

iteration t of the Markov chain, such that when βt = 1

the magnitude of h is 1 and when the temperature is

at its hottest level, i.e. βt = βmin, then h is zero. Fur-

thermore, in this example the sign of x̄t is a reasonable

proxy to identify the mode that the chain is contained

in with a negative value suggesting the chain is in the

mode centred on µ1 and µ2 otherwise.

Figure 4 clearly illustrates that the hot state modal

weight inconsistency leads the chain down a poor tra-

jectory since at hot temperatures nearly all the mass

is in modal region 1. This results in the chain never

reaching the other mode in the entire (finite) run of

the algorithm. Indeed, the trace plots in Figure 4 show

that the chain is effectively trapped in mode 1, which

although it only has 20% of the mass in the cold state,

is completely dominant at the hotter states.
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Fig. 4 Top: Trace plots of the functional of the simulated
tempering chains given in (18). On the left is the version
using the WSGM targets, which mixes well through the tem-
perature schedule and finds both modal regions. On the right
is the version using the standard power-based targets, which
fails to ever find one of the modes. Bottom: Trace plots of x̄t
in each of the cases respectively.

4.2 Simulation study for HAT

To demonstrate the capabilities of the HAT algorithm

in a non-Gaussian setting where the modes exhibit skew

then a five-dimensional four-mode skew-normal mixture

target example is presented. Albeit a mixture, this ex-

ample can be seen to give similar target distribution

geometries to non-mixture settings due to the skew na-

ture of the modes.

π(x) ∝
4∑
k=1

wk

5∏
i=1

f(xi|µk, σk, α) (19)

where the skew normal density is given by

f(z|µ, σ, α) =
2

σ
φ

(
z − µ
σ

)
Φ

(
α(z − µ)

σ

)
and where w1 = w2 = w3 = w4 = 0.25, µ1 = −15,

µ2 = 15, µ3 = 45, µ4 = −45, σ1 = 1, σ2 = 1, σ3 = 3,

σ4 = 3 and α = 2.

As will be seen in the forthcoming simulation re-

sults the imbalance of scales within each modal region

ensures that this is a very challenging problem for the

PT algorithm.

Since this target fits into the setting of Corollary 1 of

Tawn and Roberts [2018] then a geometric inverse tem-

perature schedule is approximately optimal for the HAT

target in this setting. Indeed, Tawn and Roberts [2018]

suggest that the geometric ratio should be tuned so

that the acceptance rate for swap moves between con-

secutive temperatures is approximately 0.234. In this

case, eight tempering levels were used to obtain effec-

tive mixing; these were geometrically spaced and given

by {1, 0.31, 0.312, . . . , 0.317}, was found to be approx-

imately optimal and gave an average of 0.22 for the

swaps between consecutive levels for the HAT algo-

rithm.

Using this temperature schedule along with appro-

priately tuned RWM proposals for the within tempera-

ture moves, 10 runs of both the PT and HAT algorithms

were performed. In each individual run, each tempera-

ture marginal was updated with m = 5 RWM proposals

followed by a temperature swap move proposal and this

was repeated with s = 100, 000 sweeps. This results in

a sample output of 600,001 of the cold state chain prior

to any burn-in removal. Herein for this example denote

N = 600, 001.

As expected, the scale imbalance between the modes

resulted in the PT algorithm performing poorly and

with significant bias in the sample output. In contrast,

the HAT approach was highly successful in converging

relatively rapidly to the target distribution, exhibiting

far more frequent inter-modal jumps at the cold state.
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Figure 5 shows one representative example of a run

of the PT and HAT algorithms by plotting the first

component of the five-dimensional marginal chain at

the coldest target state. It illustrates the impressive

inter-modal mixing of HAT across all 4 modal regions

as opposed to the very sticky mixing exhibited by the

PT algorithm.
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Fig. 5 Two trace plots of the first marginal component cold
state chain targeting the distribution in (19) using the HAT
and PT algorithms respectively. Note the HAT algorithm run
illustrates a chain that is performing rapid exploration be-
tween all four modes whereas the PT algorithm exhibits sig-
nificant sticky patches.

Figure 6 shows the running approximation of Pπ(−30 <

X1
i < 0) (which is approximately the weight of the

first mode i.e. w1 = 0.25) after the kth iteration of

the cold state chains, after removing a burn-in period

of 10,000 initial iterations, for the ten runs of the PT

and HAT runs respectively. The approximation after

iteration k ≤ N is given by

Ŵ k
1 :=

1

k − 10000

k∑
i=10001

1(−30<X1
i<0) (20)

where X1
i is the location of the first component of the

five-dimensional chain at the coldest temperature level

after the ith iteration. This figure indicates that the PT

algorithm fails to provide a stable estimate for Pπ(−30 <

X1
i < 0) with the running weight approximations far

from stable at the end of the runs; in stark contrast the

HAT algorithm exhibits very stable performance in this

case. In fact the final estimates for ŴN
1 the are given

in Table 1.

Table 2 presents the results of using the 10 runs of

each algorithm in a batch-means approach to estimate

the Monte Carlo variance of the estimator of ŴN
1 . The

results in Table 2 show that the Monte Carlo error is ap-
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Fig. 6 Running estimate of Pπ(−30 < X1
i < 0), i.e. Ŵk

1

given in (20), for 10 runs of the PT (left) and HAT (right)
algorithms. The horizontal black line at the level 0.25 repre-
sents the true probability that one aims to target in this case.
In both cases a burn-in of 10,000 iterations was removed. Ob-
serve the lack of convergence of the weight estimates for the
PT runs compared to the relatively impressive estimates from
the HAT runs.

Table 1 The end point estimates, ŴN
1 , of Pπ(−30 < X1

i <
0) from the 10 runs of the PT and HAT algorithms. The true
value of 0.25 appears to be well approximated by HAT but
not by PT.

PT 0.23 0.36 0.19 0.31 0.10 0.12 0.18
0.39 0.51 0

HAT 0.27 0.24 0.26 0.22 0.22 0.27 0.23
0.28 0.25 0.26

proximately a factor of 10 higher for the PT algorithm

than the HAT approach.

However, it is also important to analyse this infer-

ential gain jointly with the increase in computational

cost. Table 2 also shows that the average run time for

the 10 HAT runs was 451 seconds which is a little more

than 2 times slower than the average run time of the PT

algorithm (217 seconds) in this example. The major ex-

tra expense is due to the cost of computing the WSGM

mode assignment function in (14) at both the cold and

current temperature of interest at each evaluation of

the HAT target. Anyhow, this is very promising since

for a little more than twice the computational cost the

inferential accuracy appears to be ten times better in

this instance.
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Table 2 Using the 10 runs of each algorithm in a batch-
means approach to estimate the Monte Carlo variance of the
pooled estimator Ŵ 10N

1 i.e. SD(ŴN
1 ). Also displayed is the

average run time (RT, measured in seconds) of a single one
of the 10 repaeted runs for both methods respectively.

Ŵ 10N
1 ŜD(ŴN

1 ) ŜD(Ŵ 10N
1 ) RT (secs)

PT 0.288 0.187 0.0593 217

HAT 0.249 0.019 0.0063 451

5 Diffusion Limit and Computational

Complexity

In this section, we provide some theoretical analysis for

our algorithm. We shall prove in Theorems 2 and 3 be-

low that as the dimension goes to infinity, a simplified

and speeded-up version of our weight-preserving simu-

lated tempering algorithm (i.e., the HAST Algorithm

from Definition 5, equivalent to the ST Algorithm 1

with the adjusted target from Definition 4) converges

to a certain specific diffusion limit. This limit will allow

us to draw some conclusions about the computational

complexity of our algorithm.

5.1 Assumptions

We assume for simplicity (though see below) that our

target density π is a mixture of the form (11) with just

J = 2 modes, of weights w1 = p and w2 = 1 − p re-

spectively, with each mixture component a special i.i.d.

product gj(x) =
∏d
i=1 fj(xi) as in (4). We further as-

sume that a weight-preserving transformation (perhaps
inspired by Theorem 1(b) or (c)) has already been done,

so that

πβ(x) ∝ p
[g1(x)]β∫
[g1(x)]βdx

+ (1− p) [g2(x)]β∫
[g2(x)]βdx

≡ pgβ1 (x) + (1− p)gβ2 (x)

for each β. We consider a simplified version of the weight-

preserving process, in which the chain always mixes im-

mediately within each mode, but the chain can only

jump between modes when at the hottest temperature

βmin, at which point it jumps to one of the two modes

with probabilities p and 1−p respectively. Let I denote

the indicator of which mode the process is in, taking

value 1 or 2.

We shall sometimes concentrate on the Exponential

Power Family special case in which each of the two mix-

ture component factors is of the form fj(x) ∝ e−λj |x|
rj

for some λj , rj > 0. This includes the Gaussian case for

which r1 = r2 = 2 and λj = 1/σ2
j . (Note that the HAT

target in (15) requires the existence of second deriva-

tives about the mode points, corresponding to rj ≥ 2.)

As in Atchadé et al. [2011] and Roberts and Rosen-

thal [2014], following Predescu et al. [2004] and Kone

and Kofke [2005], we assume that the inverse tempera-

tures are given by 1 = β
(d)
0 , β

(d)
1 , . . . , β

(d)
k(d) ≈ βmin, with

βi = βi−1 − `(βi−1)/d1/2 (21)

for some fixed C1 function `. In many cases, including

the Exponential Power Family case, the optimal choice

of ` is `(β) = β`0 for a constant `0
.
= 2.38.

We let β
(d)
t be the inverse temperature at time t for

the d-dimensional process. To study weak convergence,

we let β
(d)
N(dt) be a continuous-time version of the β

(d)
t

process, speeded up by a factor of d, where {N(t)} is an

independent standard rate 1 Poisson process. To com-

bine the two modes into one single process, we further

augment this process by multiplying it by −1 when the

algorithm’s state is closer to the second mode, while

leaving it positive (unchanged) when state is closer to

the first mode. Thus define

X
(d)
t = (3− 2I)β

(d)
N(dt) . (22)

5.2 Main Results

Our first diffusion limit result (proved in the Appendix),

following Roberts and Rosenthal [2014], states that when

we are at an inverse temperature greater than βmin, the

inverse temperature process behaves identically to the

case where there is only one mode (i.e. J = 1).

Theorem 2 Assume the target π is of the form (11),

with J = 2 modes of weights w1 = p and w2 = 1 − p,

with inverse weights chosen as in (21). Then up until

the first time the process X(d) hits ±βmin, as d → ∞,

{X(d)
t } converges weakly to a fixed diffusion process X

given by (22).

Theorem 2 described what happens away from βmin.

However it says nothing about what happens at βmin.

Moreover its statespace [−1,−βmin) ∪ (βmin, 1] is not

connected, and we have not even properly defined h at

±βmin. To resolve these issues we define

h(x) =


∫ x
βmin

1
`(u)du, when x > 0

−
∫ −x
βmin

1
`(u)du, when x < 0

0, when x = 0

and set Ht = h(Xt), thus making the process H con-

tinuous at 0.
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Remark 1 The process H leaves constant densities lo-

cally invariant, G̃∗g(v) = 0 for all v 6= 0 where G̃∗ is the

adjoint of the infinitesimal generator of H, as will be

shown in the Appendix. This suggests that the density

of the invariant distribution of H (if it exists) should be

piecewise uniform, i.e. it should be constant for v > 0

and also constant for v < 0 though these two constants

might not be equal.

To make further progress, we require a proportion-

ality condition. Namely, we assume that the quantities

corresponding to I(β) = Varπβ
(

log f(x)
)

are propor-

tional to each other in the two modes. More precisely,

we extend the definition of I to I(β) = Varx∼fβ1
(log f1(x))

for β > 0 (corresponding to the first mode), and I(β) =

Var
x∼f |β|2

(log f2(x)) for β < 0 (corresponding to the

second mode), and assume there is a fixed function I0 :

R+ → R+ and positive constants r1 and r2 such that

we have I(β) = I0(β)/r1 for β > 0 (in the first mode),

while I(β) = I0(|β|)/r2 for β < 0 (in the second mode).

For example, it follows from Section 2.4 of Atchadé

et al. [2011] that in the Exponential Power Family case,

I(β) = 1/r1β
2 for β > 0 and I(β) = 1/r2β

2 for β < 0,

so that this proportionality condition holds in that case.

Corresponding to this, we choose the inverse tem-

perature spacing function as follows (following Atchadé

et al. [2011] and Roberts and Rosenthal [2014]):

`(β) = I
−1/2
0 (β) `0 (23)

for some fixed constant `0 > 0.

To state our next result, we require the notion of

skew Brownian motion, a generalisation of usual Brow-

nian motion. Informally, this is a process that behaves

just like a Brownian motion, except that the sign of

each excursion from 0 is chosen using an independent

Bernoulli random variable; for further details and con-

structions and discussion see e.g. Lejay [2006]. We also

require the function

z(h) = h

[
2Φ

(
−`0

2
√
r(h)

)]−1/2

.

where r(h) = r1 for h > 0 and r(h) = r2 for h < 0.

We then have the following result (also proved in the

Appendix).

Theorem 3 Under the set-up and assumptions of The-

orem 2, assuming the above proportionality condition

and the choice (23), then as d→∞, the process {X(d)
t }

converges weakly in the Skorokhod topology to a limit

process X. Furthermore, the limit process has the prop-

erty that if

Zt = z
(
h(Xt)

)
,

then Z is skew Brownian motion B∗t with reflection at

(3− 2i)

[
2Φ

(
−`0
2
√
ri

)]−1/2 ∫ 1

βmin

1

`(u)
du, i = 1, 2 .

(24)

Remark 2 It follows from the proof of Theorem 3 that

the specific version of skew Brownian motion B∗t that

arises in the limit is one with excursion weights propor-

tional to

a = p

[
2Φ

(
−`0

2
√
r1

)]1/2

and b = (1−p)
[
2Φ

(
−`0

2
√
r2

)]1/2

.

That means that the stationary density for B∗t on the

positive and negative values is proportional to a and b

respectively. This might seem surprising since the lim-

iting weights of the modes should be equal to p and

1−p, not proportional to a and b (unless r1 = r2). The

explanation is that the lengths of the positive and neg-

ative parts of the domain are given by
[
2Φ
(
−`0

2
√
r1

)]1/2
and

[
2Φ
(
−`0

2
√
r2

)]1/2
respectively. Hence, the total sta-

tionary mass of the positive and negative parts – and

hence also the limiting modes weights – are still p and

1− p as they should be.

5.3 Complexity Order

Theorems 2 and 3 have implications for the computa-

tional complexity of our algorithm.

In Theorem 2, the limiting diffusion process Ht is

a fixed process, not depending on dimension except

through the value of βmin. It follows that if βmin is kept

fixed, then Ht reaches 0 (and hence mixes modes) in

time O(1). Since Ht is derived (via Xt) from the βt
process speeded up by a factor of d, it thus follows that

for fixed βmin, βt reaches βmin (and hence mixes modes)

in time O(d). So, if βmin is kept fixed, then the mixing

time of the weight-preserving tempering algorithm is

O(d), which is very fast. However, this does not take

into account the dependence on βmin, which might also

change as a function of d.

Theorem 3 allows for control of the dependence of

mixing time on the values of βmin. The limiting skew

Brownian motion process B∗t is a fixed process, not de-

pending on dimension nor on βmin, with range given by

the reflection points in (24). It follows that Zt reaches

0 (and hence mixes modes) in time of order the square

of the total length of the interval, i.e. of order(
2∑
i=1

[
2Φ

(
−`0
2
√
ri

)]−1/2 ∫ 1

βmin

1

`(u)
du

)2
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In the Exponential Power Family case, this is easily

computed to be O
(
d [log βmin]2

)
.

This raises the question of how large βmin needs to

be, as a function of dimension d. If the proposal scal-

ing is optimal for within each mode at the cold tem-

perature, then the proposal scaling is O(d−1/2). Then,

at an inverse temperature β, the proposal scaling is

O((βd)−1/2). Hence, at an inverse temperature β, the

probability of jumping from one mode to the other (a

distance O(
√
d) away) is roughly of order e−βd

2

. This

is exponentially small unless β = O(1/d2). This indi-

cates that, for our algorithm to perform well, we need

to choose βmin = O(1/d2). With this choice, the mixing

time order becomes(
2∑
i=1

[
2Φ

(
−`0
2
√
ri

)]−1/2 ∫ 1

1/d2

1

`(u)
du

)2

In the Exponential Power Family case, this corre-

sponds to O
(
d [log d]2

)
. That is, for the inverse temper-

ature process to hit βmin and hence mix modes, takes

O
(
d [log d]2

)
iterations. This is a fairly modest complex-

ity order, and compares very favourably to the exponen-

tially large convergence times which arise for traditional

simulated tempering as discussed in Subsection 2.2.

5.4 More than Two Modes

Finally, we note that for simplicity, the above analy-

sis was all done for just two modes. However, a simi-

lar analysis works more generally. Indeed, suppose now

that we have k modes, of general weights p1, p2, . . . , pk ≥
0 with

∑
i pi = 1. Then when β gets to βmin, the process

chooses one of the k modes with probability pi. This

corresponds to {Yt} being replaced by a Brownian mo-

tion not on [−1, 1], but rather on a “star” shape with

k different length-1 line segments all meeting at the

origin (corresponding, in the original scaling, to βmin),

where each time the Brownian motion hits the origin

it chooses one of the k line segments with probability

pi each. This process is called Walsh’s Brownian mo-

tion, see e.g. Barlow et al. [1989]. (The case k = 2

but p1 6= 1/2 corresponds to skew Brownian motion as

above.) For this generalised process, a theorem similar

to Theorem 2 can be then stated and proved by simi-

lar methods, leading to the same complexity bound of

O
(
d [log d]2

)
iterations in the multimodal case as well.

6 Conclusion and Further Work

This article has introduced the HAT algorithm to miti-

gate the lack of regional weight preservation in standard

power-based tempered targets. Our simulation studies

show promising mixing results, and our theorems indi-

cate the mixing times can become polynomial rather

than exponential functions of the dimension d, and in-

deed of time O(d[log d]2) under appropriate assump-

tions.

Various questions remain to make our HAT approach

more practically applicable. The “modal assignment func-

tion” needs to be specified in an appropriate way, and

more exploration into the robustness of the current as-

signment mechanism is needed to understand its perfor-

mance on heavier and lighter tailed distributions. The

suggested HAT target assumes knowledge of the mode

points which typically one will not have to begin with

and one would rely on effective optimisation methods

to seek these out either during or prior to the run of

the algorithm. Indeed, this has been partially explored

by the authors in Tawn et al. [2018]. The performance

of HAT is heavily reliant on the mixing at the hottest

temperature level; the use of RWM here can be prob-

lematic for HAT where the mode heights of the disperse

modes can be far lower than the narrower modes. As

such more advanced sampling schemes such as discre-

tised tempered Langevin could give accelerated mixing

at the hot state; the effects of which would be trans-

ferred to an improvement in the mixing at the coldest

state.

In the theoretical analysis of Section 5, the spac-

ing between consecutive inverse-temperature levels was

taken to be O(d−1/2) to induce a non trivial diffusion

limit. However, this result required strong assumptions.

Accompanying work in Tawn and Roberts [2018] sug-

gests that for the HAT algorithm under more general

conditions, the consecutive optimal spacing should still

be O(d−1/2), with an associated optimal acceptance

rate in the interval [0, 0.234].

7 Appendix

In this Appendix, we prove the theorems stated in the

paper.

7.1 Proof of Theorem 1

Herein, assume the mixture distribution setting of (11)

and (12) where the mixture components consist of mul-

tivariate Gaussian distributions i.e. gj(x) = φ(x;µj , Σj).

We prove each of the three parts of Theorem 1 in turn.

Proof (Proof of Theorem 1(a)) Recall that hj(x) =

wjφ(x;µj , Σj) where ∃C ∈ R such that C
∑J
j=1 wj = 1.
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Hence, taking fj(x, β) = [hj(x)]β gives

fj(x, β) = wβj φ(x;µj , Σj)
β

= wβj

((2π)d|Σj |
) 1−β

2

βd/2

φ(x;µj ,
Σj
β

)

∝ wβj |Σj |
1−β
2 φ

(
x;µj ,

Σj
β

)
Proof (Proof of Theorem 1(b)) Recall the result of The-

orem 1(a). To adjust for the weight discrepancy from

the cold state target a multiplicative adjustment factor,

αj(x) is used such that

fj(x, β) = hj(x)βαj(x, β)

where αj(x, β) =
(
wβj |Σj |

1−β
2

)−1

. An identical argu-

ment to Theorem 1(a) shows that this immediately

gives W(j,β) ∝ wj .
In a Gaussian setting, up to a proportionality con-

stant

wj ∝ hj(x)

[
(2π)

d
2 |Σj |

1
2 exp

{
1

2
(x− µj)TΣ−1

j (x− µj)
}]

(25)

and at any point x ∈ Rd

∇ log hj(x) = −Σ−1
j (x− µj) (26)

∇2 log hj(x) = −Σ−1
j . (27)

Substituting these gradient terms (26) and (27) into

(25) and then using this form of (25) to create the ad-

justment factor αj(x, β) =
(
wβj |Σj |

1−β
2

)−1

completes

the proof.

Proof (Proof of Theorem 1(c))

Since hj(x) = wjφ(x;µj , Σj) then

fj(x, β) = hj(x)βhj(µj)
(1−β)

= wjφ(x;µj , Σj)
βφ(µj ;µj , Σj)

(1−β)

=
wj
βd/2

φ

(
x;µj ,

Σj
β

)
and so W(j,β) ∝ wj .

Remark 3 It is possible to extend the weight adjusted

target result of Theorem 1(c) to a setting where the

target consists of a mixture of a general but common

distribution, with each component having a different

shape and scale factor; we plan to pursue this result

elsewhere.

7.2 Proof of Theorem 2

Since mixing between modes is only possible at βmin,

the dynamics will be identical to the single mode case

(J = 1) as covered in Roberts and Rosenthal [2014].

It therefore follows directly from Theorem 6 of Roberts

and Rosenthal [2014] that as d→∞, the process {Xt}
converges weakly, at least on Xt > 0, to a diffusion limit

{Xt}t≥0 satisfying

dXt =

[
2`2(Xt)Φ

(
−`(Xt)I

1/2(Xt)

2

)]1/2

dBt

+

[
`(Xt) `

′(Xt) Φ

(
−I1/2(Xt)`(Xt)

2

)

− `2(Xt)

(
`(Xt)I

1/2(Xt)

2

)′
φ

(
−I1/2(Xt)`(Xt)

2

)]
dt ,

where I(β) = Varx∼fβ1
(log f1(x)). If we extend the defi-

nition of I to I(β) = Varx∼fβ1
(log f1(x)) for β > 0, and

I(β) = Var
x∼f |β|2

(log f2(x)) for β < 0, so that positive

values correspond to the first mode while negative val-

ues correspond to the second mode, then (28) also holds

for Xt < 0, except with the sign of the drift reversed.

7.3 Proof of Remark 1

We note that for x > 0 (with exactly analogous results

for x < 0), h′(x) = `(x)−1, and h′′(x) = −`′(x)`(x)−2.

So, if we set Ht = h(Xt), then we compute by Ito’s

Formula that

dHt = h′(Xt)dXt +
1

2
h′′(Xt)d〈X〉t

= `(Xt)
−1dXt −

1

2
`′(Xt)`(Xt)

−2d〈X〉t

= `(Xt)
−1

[
2`2(Xt)Φ

(
−`(Xt)I

1/2(Xt)

2

)]1/2

dBt

+`(Xt)
−1

[
`(Xt)`

′(Xt)Φ

(
−I1/2(Xt)`(Xt)

2

)

−`2(Xt)

(
`(Xt)I

1/2(Xt)

2

)′
φ

(
−I1/2(Xt)`(Xt)

2

)]
dt

−1

2
`′(Xt)`(Xt)

−2

[
2`2(Xt)Φ

(
−`(Xt)I

1/2(Xt)

2

)]
dt

=

[
2Φ

(
−`(Xt)I

1/2(Xt)

2

)]1/2

dBt

+

[
`′(Xt) Φ

(
−I1/2(Xt)`(Xt)

2

)

−`(Xt)

(
`(Xt)I

1/2(Xt)

2

)′
φ

(
−I1/2(Xt)`(Xt)

2

)]
dt
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−1

2
`′(Xt)

[
2Φ

(
−`(Xt)I

1/2(Xt)

2

)]
dt

=

[
2Φ

(
−`(Xt)I

1/2(Xt)

2

)]1/2

dBt

− `(Xt)

(
`(Xt)I

1/2(Xt)

2

)′
φ

(
−I1/2(Xt)`(Xt)

2

)
dt

=

[
2Φ

(
−`(Xt)I

1/2(Xt)

2

)]1/2

dBt

+ `(Xt)

[
Φ

(
−I1/2(Xt)`(Xt)

2

)]′
dt (28)

Re-writing everything in terms of Ht = h(Xt), this be-

comes

dHt =

[
2Φ

(
−`(h−1(Ht))I

1/2(h−1(Ht))

2

)]1/2

dBt

+ `(h−1(Ht))

[
Φ

(
−I1/2(h−1(Ht))`(h

−1(Ht))

2

)]′
dt .

(29)

Now, in general, a diffusion of the form dHt = σ(Ht)dBt+

µ(Ht)dt has locally invariant distribution π provided

that 1
2 (log π)′σ2 + σσ′ = µ. In particular, it has a uni-

form locally ivariant distribution , i.e. with π constant,

provided that µ = σσ′, i.e. that 2µ = (σ2)′. In this

specific case, we verify that

(σ2)′ =
d

dH

[
2Φ

(
−`(h−1(H))I1/2(h−1(H))

2

)]

=

(
dH

dX

)−1
d

dX

[
2Φ

(
−`(X)I1/2(X)

2

)]

=
(
`(X)−1

)−1
[
2Φ

(
−`(X)I1/2(X)

2

)]′
which is indeed equal to 2µ since in the above equation

µ = `(X)

[
Φ

(
−I1/2(X)`(X)

2

)]′
.

Therefore H leaves constant densities locally invariant.

7.4 Proof of Theorem 3

We now assume that I(β) = I0(β)/r1 for β > 0, while

I(β) = I0(|β|)/r2 for β < 0, and that `(β) = I
−1/2
0 (β) `0.

This makes `(x)I1/2(x) = `0/
√
r1 for x > 0, and

`(x)I1/2(x) = `0/
√
r2 for x < 0. In either case, `(x)I1/2(x)

is constant, i.e. has derivative zero. That in turn col-

lapses (28), at least for Ht 6= 0, into the simpler

dHt =

[
2Φ

(
−`0

2
√
r(Ht)

)]1/2

dBt ,

where r(H) = r1 for H > 0 and r(H) = r2 for H < 0.

Finally, we set

Zt = Ht

[
2Φ

(
−`0

2
√
r(Ht)

)]−1/2

.

That is, Zt is a version of Ht which is stretched by a

piecewise linear spatial function, which is linear on each

of the positive and negative values respectively. It then

follows immediately from the above that dZt = dBt,

i.e. that Zt behaves like Brownian motion on each of its

two branches (positive and negative). It remains only

to prove that at Zt = 0, the convergence still holds.

We complete the proof similarly to previous proofs

of diffusion limits of MCMC algorithms (e.g. Roberts

et al. [1997]; Roberts and Rosenthal [1998]; Bédard and

Rosenthal [2008]), following the approach indicated in

Chapter 4 of Ethier and Kurtz [1986] (in particular

Corollary 8.7 of that chapter), by proving that the gen-

erator G(d) of the original process under these com-

bined transformations (i.e., jumping according to a rate

d Poisson process, then transformed by the h function,

and then stretched by the piecewise linear function)

converges uniformly to the generator G∗ of skew Brow-

nian motion, when applied to a core of functionals.

Let zmax =
∫ 1

βmin
`−1(u) × 2Φ(−`0/(2

√
r1) and let

zmin = −
∫ 1

βmin
`−1(u) × 2Φ(−`0/(2

√
r2). We let D be

the set of all functions f : [−zmin, zmax] → R which

are continuous and twice-continuously-differentiable on

[zmin, 0] and also on [0, zmax], with matching one-sided

second derivatives f ′′+(0) = f ′′−(0), and skewed one-

sided first derivatives satisfying af ′+(0) = bf ′−(0) where

a = p
[
2Φ
(
−`0

2
√
r1

)]1/2
and b = (1− p)

[
2Φ
(
−`0

2
√
r2

)]1/2
.

Finally we require that f ′(zmax) = f ′(zmin) = 0 to de-

scribe the reflecting boundaries at the endpoints. Thus,

C2 functions are not contained in D due the enforced

discontinuity of the first derivative at 0, but e.g. f ∈ D
if f(x) = x2 + ax1x<0 + bx1x>0. In particular, D is

dense (in the sup norm) in the set of all C2[zmin, zmax]

functions, so in the language of Ethier and Kurtz [1986],

D serves as a core of functions for which it suffices to
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prove that the generators converge. Furthermore, it fol-

lows from e.g. Liggett [2010] and Exercise 1.23 of Chap-

ter VII of Revuz and Yor [2004]) that the generator of

skew Brownian motion (with excursion weights propor-

tional to a and b respectively) satisfies that G∗f(x) =
1
2f
′′(0) for all f ∈ D, using the convention that f ′′(0)

represents the common value f ′′+(0) = f ′′−(0).

Now, it follows from the previous discussion that for

any fixed f ∈ D,

lim
d→∞

sup
z∈[zmin,zmax]\{0}

|G(d)f(z)−G∗f(z)| = 0 . (30)

That is, the generators do converge uniformly to theG∗,

as required, at least for z 6= 0, i.e. avoiding the mode-

hopping value βmin. To complete the proof, it suffices

to prove that (30) also holds at z = 0, i.e. to prove:

Lemma 1 We have that:

lim
d→∞

G(d)f(0) = G∗f(0) =
1

2
f ′′(0) .

Proof Note first that if the original inverse-temperature

process proposes to move the inverse-temperature from

βmin to βmin + `(βmin)d−1/2, then the Ht process pro-

poses to move from 0 to ±d−1/2, and the Zt process pro-

poses to move from 0 to ±d−1/2

[
2Φ

(
−`0

2
√
r(±)

)]−1/2

.

Furthermore, the Zt process, like the Xt process, is sped

up by a factor of d, which multiplies its generator by d.

Hence, we conclude that

G(d)f(0) = d

(
pα+

[
f

(
d−1/2

[
2Φ

(
−`0

2
√
r1

)]−1/2
)
− f(0)

]

+ (1− p)α−

[
f

(
d−1/2

[
2Φ

(
−`0

2
√
r2

)]−1/2
)
− f(0)

])
,

where α+ is the acceptance probability for the original

process to accept a proposal to increase the inverse-

temperature from βmin to βmin+`(βmin)d−1/2 in mode 1,

and α− is the acceptance probability for the same pro-

posal in mode 2.

Next, note that the process Zt has expected squared

jumping distance equal to the square of its volatility,

which is just equal to 1. On the other hand, the ex-

pected squared jumping distance must be equal to the

squared distance of its proposed move times the accep-

tance probability. Hence, in mode 1, we must have

1 =

([
2Φ

(
−`0

2
√
r1

)]−1/2
)2

α+

whence

α+ = 2Φ

(
−`0

2
√
r1

)

and similarly

α− = 2Φ

(
−`0

2
√
r2

)
.

Then, taking a Taylor series expansion, we obtain

that for f ∈ D,

G(d)f(0) = d

(
pα+

[
f

(
d−1/2

[
2Φ

(
−`0

2
√
r1

)]−1/2
)
− f(0)

]

+(1− p)α−

[
f

(
−d−1/2

[
2Φ

(
−`0

2
√
r2

)]−1/2
)
− f(0)

])

= dp

[
2Φ

(
−`0

2
√
r1

)](
d−1/2

[
2Φ

(
−`0

2
√
r1

)]−1/2
)
f ′+(0)

− 1

2
dp

[
2Φ

(
−`0

2
√
r1

)](
d−1/2

[
2Φ

(
−`0

2
√
r1

)]−1/2
)2

f ′′+(0)

+O(dpα+d
−3/2)

+

[
d(1− p)

[
2Φ

(
−`0

2
√
r2

)]

×

(
d−1/2

[
2Φ

(
−`0

2
√
r2

)]−1/2
)
f ′−(0)

]

+

[
1

2
d(1− p)

[
2Φ

(
−`0

2
√
r2

)]

×

(
d−1/2

[
2Φ

(
−`0

2
√
r2

)]−1/2
)2

f ′′−(0)

]
+ O(dpα+d

−3/2)

= d1/2p

[
2Φ

(
−`0

2
√
r1

)]1/2

f ′+(0) +
1

2
pf ′′+(0)

−d1/2(1− p)
[
2Φ

(
−`0

2
√
r2

)]1/2

f ′−(0)

+
1

2
(1− p)f ′′−(0) +O(d−1/2).

Then, by definition of f ∈ D, the terms involv-

ing f ′+(0) and f ′−(0) cancel, and the terms involving

f ′′+(0) and f ′′−(0) combine. Recalling the convention

f ′′(0) = f ′′+(0) = f ′′−(0), we obtain finally that

G(d)f(0) =
1

2
f ′′(0) +O(d−1/2)

so that

lim
d→∞

G(d)f(0) =
1

2
f ′′(0) = G∗f(0)

as claimed.
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