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Note: After completing this paper, it was discovered that similar ideas
had been studied previously by others (see A.H. Hoekstra and F.W. Steu-
tel, Linear Alg. Appl. 60 (1984), 65-77; J.Th. Runnenburg and F.W. Steu-
tel, Ann. Math. Stat. 33 (1962), 1483-1484). Thus, this paper was
withdrawn at that point.

1. Introduction.

One important subject in the study of Markov chains is the question of their con-
vergence to a stationary distribution, and in particular the rate of this convergence. For
random walks on finite groups, great progress has been made in determining precise con-
vergence rates in many cases, including for ordinary “riffle” card-shuffling [BD]. See [D]
for background, examples, and references. For random walks on compact Lie groups, there
has been some recent progress; see [R1]. For more general Markov chains, the notion of
Harris recurrence (see [A], [AN], [N]) has proven useful in obtaining rates of convergence
(see e.g. [T], [R2], [R3)]).

Finite state-space Markov chains remain the simplest case to study, because their
convergence can be analyzed directly in terms of the finite spectrum of their transition
kernel; see e.g. [DS]. In this paper, we identify a class of Markov chains, which we call
“pseudo-finite”, which are “essentially” finite, in the following sense. There is a finite state
space Markov chain that captures all of the important information about the pseudo-finite
chain, and convergence-rate questions about the pseudo-finite chain can be answered in
terms of the finite chain. Thus, to understand the pseudo-finite chain it is completely
sufficient to understand the finite chain, an apparently easier problem.

The definition of pseudo-finite is as follows.

Definition. A Markov chain {0} on a general state space © is pseudo-finite if the
transition probabilities P(0, ) satisfy

PO.) =3 5O (-)
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for some finite n, some probability distributions P;,..., P, on ©, and some (non-random)
measurable weight functions f1,..., f, : © — [0,1] with ) f;(8) =1 for all § € ©.
J

We shall obtain results which reduce the question of convergence of pseudo-finite
Markov chains to a simple calculation (Corollary 2), and give a bound on the rate of
convergence in terms of an associated finite Markov chain (Proposition 1).

Of course, pseudo-finite Markov chains are a very special case of Markov chains. Thus,
this work should be seen as a small step towards understanding the convergence rate of
general state space Markov chains, but by no means the complete picture. On the other
hand, Proposition 3 below shows that a very large class of Markov chains are “almost”
pseudo-finite in a certain natural sense.

Our interest in pseudo-finiteness arose in an application [R2] to Bayesian statistics.
The Markov chains considered there were pseudo-finite, with the P; being various beta
distributions, and the f;(0) being related to distributions of sums of binomial distributions.
The notion of pseudo-finiteness helped the author’s analysis of these chains (though it was

not mentioned explicitly). See [R2] for details.

2. Results.
The reason for the terminology “pseudo-finite” is given by

Proposition 1. Given a pseudo-finite Markov chain {6;}7° , as above, with initial dis-
tribution (at time k = 0) given by L(0y) = v, define the finite Markov chain {yx}7>, on
Y={1,2,...,n} by

(a) The initial distribution (at time k = 1) for y; is given by
Prob(y1 = j) = E,(f;) ,

the expected value of f; under the distribution v; and

(b) The transition matrix for {yx} is given by
Prob(yes1 = Jj | ye = 1) = Tji = Ep,(f;)
the expected value of f; under the distribution P;.

Then {6x} and {yi} are equivalent in the sense that
(1) IfA,gj) = Prob(yx = j), then for k > 1,

L(Ok) = ZR:A;?)PJ‘( )5
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(2) If A = {A(j)};zl is a stationary distribution for {y,} (where AU) = Prob(y = j)),
then 7(-) = Y. AU P;(-) is stationary for {0 };

j=1
(3) If w(-) is a stationary distribution for {0y}, and the P;(-) are linearly independent,

then {AY) = E.(f;)} is stationary for {yx};
(4) If A and 7 are as in (2), then for k > 1,

1£(mk) = mlle < [[L£(yr) = All,

where || - ||, and || - are total variation distance on © and ), respectively.

I

Proof. For (1), we proceed by induction on k. For k = 1,

£(62) = [ Po.w(d) = [ 3 5OP;Cvias)
=Y BB =D AVB().

J
Once (1) is known for k, for k 4+ 1 we have

L(Ops1) = /P(e ) Prob(, € d) /ij VPi() > A Pi(do)
=" Ep (f;)A)P;(")
2%}
=Y TAYP() =AY P()
.7 J
Statement (2) follows immediately from statement (1).
For (3),

w() = [ PO, tas) = [ ij<e>Pj<->w<de>
—ZE (F)P;() =3 ADP ()

J
Hence, iterating this expression once,

S A0 P () = /P(@, )3 AO Py (dp)

= [ S 5op0 3 49 r )
= Ep,(f;,)AYP;()

,J
=Y (Z TjiA@) P
J %
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By linear independence of the P;, we must have AU) = > T;; A®,
For (4), we note that for any S C O, Z
|Prob(0 € S) — w(9)]
=13 AVP(S) — Y ADP(S)] using (1)
j j

= [Ea,(¢) — Ea(9) where ¢ : ) — [0,1] by ¢(j) = P;(5)
< sup |Ea(¢) — Ea(g)| = [|[A® — 4], .
¢:Y—[0,1]

This proposition shows that convergence of pseudo-finite Markov chains can be under-
stood in terms of the theory of finite chains. For example, it is well known that a strictly
positive finite Markov chain (i.e. one with P(z,y) > 0 for all z,y) converges exponentially

quickly to a (strictly positive) unique stationary distribution. This immediately implies

Corollary 2. Let {0y} be a pseudo-finite Markov chain, with f;(8) and P;(-) the
associated weight functions and distributions. Suppose Ep,(f;) > 0 for each i,j. Then

{61} has a unique invariant distribution to which it converges exponentially quickly.

Proposition 1 (4) shows that to study the rate of convergence of a pseudo-finite Markov
chain {6}, one need only consider an equivalent, finite Markov chain {y;}. We illustrate

this with a simple example.

Example. Consider a Markov chain {6} defined on the unit interval [0,1] with 6, = 1/3,
and with the following transition mechanism: given 6, we choose 61 by

(a) with probability 6 /2, choosing 1 uniform on [0, £];

(b) with probability (6))?/2, choosing 01 uniform on [, 1];

(c) with probability 1—6y/2—(6;)?/2, choosing 01 from the beta distribution Beta(2,2).
To analyze this Markov chain directly on [0,1] would be somewhat involved; however, using
the notion of pseudo-finiteness it is very easy. Using the notation in the definition, we have
n =3, f1(0) = 0/2, f»(0) = 6%/2, and f3() =1—6/2—6%/2. Also P, is uniform on [0, 1],
P, is uniform on [3,1], and P3 = Beta(2,2). Thus the matrix Tj; is given by

1 3 1

] ] 2

P N—| L 7 3
TN_EPi(fJ)_ 24 24 10
5 1 1

6 3 5



Also the initial distribution of {y} is

1 17

L) = 1HG) = 51502

We work numerically for simplicity. We compute that the eigenvalues of the matrix 1" are
A =1 Ao = 0.06505; A3 = —0.44838 |
with corresponding eigenvectors
1 = [0.3446,0.2092,0.4462);  wo = [0.3968, —1.3968,1); v = [~0.6301, —0.3699, 1]
(so vy is the stationary distribution for {yx}). In terms of these eigenvectors,
L(y1) = v1 + 0.0302v4 + 0.3014v3 ,

SO
L(yr) = v1 + 0.0302(A5 Yy + 0.3014(A\H)vs .

Hence,
1 k—1 k—1 Lk
| L(yx) —v1lly, = 5\]0.0302()\2 Jua 4+ 0.3014(\5 )U3HL1 < (0.55)(5) (say).

We thus conclude that our original chain {6} has a unique stationary distribution given
by
7(-) = (0.3446) P1 () + (0.2092) P>(-) + (0.4462) P5(-) ,

and that for £ > 1,
1
1£(65) — 7l < 055)(3)"

We acknowledge that the applications of Proposition 1 will be somewhat limited,
however they do sometimes arise naturally as the work in [R2] indicates.
We conclude with the observation that a large class of Markov chains is “almost”

pseudo-finite. Indeed, we have

Proposition 3. Let {0} be a Markov chain on a state space O, with transition kernel
P(0,-). Assume that © is compact, and that there is a measure v on © for which P(0,-) <<
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v(-) for all 0, say with density fo(6’). Write f(0,0") for fo(6’). Assume further that f is
a continuous function of two variables, except for possible jump-discontinuities on a finite
rectangular grid. Then for any € > 0, there is a pseudo-finite Markov chain Q(0,-) on ©,
with

Q0,9) — P(©0,9) < e,

for all@ € © and S C O.

Proof. Since f(6,6’) is a rectangularly piecewise continuous function on the compact set
© x O, given € > 0 we can find a function fy on © x O of the form fy(6,0") = >_ ¢;(0)h;(0")
i=1

for which
|f(«9,0’)—f0(«9,«9’)| <€ for all 6,60’ € © .

(Indeed, we can take g; and h; to be step functions.) Define Q(-,-) by
=> gil0)v

where dv; = h; dv. Then Q(-,-) is pseudo-finite, and for any 6 and S,

|P(9,S) - Q(6,5)| = / (6,d6) Z/g@ vi(df')

:/f99 (do') /foee (do’)

<€I/(S) < e,

as required. [ |
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