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In this paper we examine the relationship between small sets and their general-
isation, pseudo-small sets. We consider conditions which imply the equivalence
of the two notions, and give examples where they are definitely different. We
give further examples where sets are both pseudo-small and small, but the mi-
norisation constants implied by the two notions are different. Applications of
recent computable bounds results are given and extended. We also give a result
linking the ideas of monotonicity and minorisation. Specifically we demonstrate
that if a non-monotone chain satisfies a minorisation condition, and furthermore
is stochastically dominated by a monotone chain which satisfies a Lyapunov drift
condition, then a probability construction exists which incorporates both the
bounding process and the minorisation condition.
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1. Introduction.

A well-known concept in the theoretical study of Markov chains on general state spaces

is the property of small set, or minorisation condition. This is the property that all of the

transition probability distributions Pn0(x, ·), for some fixed n0 ∈ N and for all x in some

subset C, all have a certain non-zero component in common. In symbols, Pn0(x, ·) ≥ ε ν(·)

for all x ∈ C. Such small sets arise often in the theoretical study of Markov chain Monte

Carlo (MCMC) algorithms; see e.g. Smith and Roberts (1993), Tierney (1994), Gilks,

Richardson and Spiegelhalter (1996), and Roberts and Rosenthal (1998).
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If the small set C is hit infinitely often with probability 1, then it allows for the

construction of regeneration times (cf. Athreya and Ney, 1978; Nummelin, 1978, 1984;

Asmussen, 1987; Mykland, Tierney, and Yu, 1995). If the mean interarrival time is finite,

then such regeneration times guarantee the existence of a stationary distribution, and

furthermore provide some control (in terms of hitting times of C) over how quickly the

chain converges to this stationary distribution.

Small sets also allow for the construction of couplings (cf. Lindvall, 1992; Meyn and

Tweedie, 1993; Rosenthal, 1995a; see Appendix for details), whereby two different copies

of the chain become equal with positive probability (since they may both update from

the same distribution ν(·)). Such couplings also provide bounds on convergence rates

to stationary distributions (though without guaranteeing the existence of a stationary

distribution), through the coupling inequality.

Finally, since small sets provide a condition which holds for all elements of C simulta-

neously, they can also be used to construct coalescence (see e.g. Murdoch and Green, 1998),

whereby copies of the chain started at all elements of the state space all become equal si-

multaneously. This is especially important in exact sampling schemes such as coupling

from the past (Propp and Wilson, 1996) and Fill’s algorithm (Fill, 1998; Fill, Machida,

Murdoch, and Rosenthal, 1999).

In a different direction, small sets can be used to construct shift-couplings (cf. Aldous

and Thorrison, 1993; Roberts and Rosenthal, 1997), whereby two copies of the chain

become equal at two different times. This can be used to provide bounds on the convergence

rate to stationarity of ergodic average distributions.

A notion related to but weaker than small set is that of pseudo-small set, or pseudo-

minorisation condition. This notion was introduced formally in Roberts and Rosenthal

(1996), though the idea underlying it may have been observed earlier. The idea here is

that every pair of points (x, y) ∈ C × C has a component in common, but that common

component may vary depending on the pair chosen. In symbols, Pn0(x, ·) ≥ ε νxy(·) and

Pn0(y, ·) ≥ ε νxy(·) for all pairs (x, y), though here νxy depends on the choice of x and y.

The pseudo-minorisation condition does not immediately provide notions such as re-

generation, the existence of a stationary distribution, coalescence, or a shift-coupling con-
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struction. However, the pseudo-minorisation condition is perfectly adequate for ordinary

(pairwise) coupling constructions, which always consider just two chains at a time (see

Appendix for details). That simple observation provides the basis for the current paper.

This paper is organised as follows. In Section 3, we develop analogues of previous

convergence-rate results in terms of pseudo-small sets. In Section 4, we provide specialised

versions of these results for countable and absolutely-continuous chains. Section 5 presents

a number of different examples of small and pseudo-small sets. In Section 6, we consider

the relationship between small and pseudo-small sets, and prove that for φ-irreducible,

aperiodic Markov chains with countably-generated σ-algebras, all pseudo-small subsets

are in fact small (though perhaps with much worse values of n0 and ε). Section 7 considers

what can go wrong when assumptions of φ-irreducibility and aperiodicity are relaxed.

Finally, Section 8 presents a result which applies convergence results for stochastically

monotone chains to non-monotone chains which are instead bounded by monotone chains.

The paper closes with an Appendix which reviews the traditional pairwise coupling

construction based on small sets, and describes how the construction can be modified to

be used for pseudo-small sets.

2. Definitions.

Let {Xn} be a Markov chain on a state space X , having transition probabilities P (x, ·).

We begin with a standard definition.

Definition. A set C ⊆ X is small (or, (n0, ε, ν)-small) if there is n0 ∈ N, ε > 0, and a

probability measure ν, such that

Pn0(x, ·) ≥ εν(·) , x ∈ C . (1)

The existence of small sets for φ-irreducible Markov chains is proved in Jain and

Jameson (1967) and Orey (1971); see Meyn and Tweedie (1993) for a modern exposition.

(Recall that a Markov chain is φ-irreducible if there is a non-zero measure φ on X , such

that for any subset A with φ(A) > 0, there is positive probability of hitting A starting

from any x ∈ X . See e.g. Meyn and Tweedie, 1993, for this and other basic Markov chain

definitions.)
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Small sets have many uses. The one most relevant to the current paper is for pairwise

coupling constructions. Briefly, we can construct two copies of the Markov chain (one

started in the arbitrary initial distribution, the other started in the stationary distribution)

such that, each time they are both in the small set C, they have probability ε of coupling

n0 iterations later. For formal details, see the Appendix.

We now introduce a related, but weaker, notion than that of a small set.

Definition. A set C ⊆ X is pseudo-small (or, (n0, ε, {νxy})-pseudo-small) if there is

n0 ∈ N and ε > 0 such that for all (x, y) ∈ C ×C, there is a probability measure νxy with

Pn0(x, ·) ∧ Pn0(y, ·) ≥ ενxy(·) . (2)

(Note that (2) is shorthand for the two equations Pn0(x,A) ≥ ενxy(A) and Pn0(y,A) ≥

ενxy(A) for all measurable sets A.)

Obviously, any small set is also pseudo-small, with the same n0 and ε, and with

νxy = ν for all pairs (x, y). The primary motivation for pseudo-small sets is that the usual

pairwise coupling construction for small sets can be used essentially without change for

pseudo-small sets (see Appendix). This means that any result proved using the small set

pairwise coupling construction has an immediate analogues for pseudo-small sets, as we

now explore.

3. General pseudo-small convergence results.

As described above, for any convergence bounds involving the ordinary (pairwise) cou-

pling construction as in the Appendix, the bound remains true if a minorisation condition

is replaced by a corresponding pseudo-minorisation condition. Thus, any coupling-based

convergence result which uses a small set can immediately be “transformed” into a corre-

sponding result involving pseudo-small sets.

In particular, because of the purely coupling proof of the following result for small

sets (cf. Rosenthal, 1993; Meyn and Tweedie, 1993, Theorem 16.2.4), we have
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Proposition 1. Let P (x, ·) be the transition probabilities for a Markov chain on a state

space X , with stationary distribution π(·). If the entire state space X is (n0, ε)-pseudo-

small, then

‖Pn(x, ·)− π(·)‖ ≤ (1− ε)bn/n0c , n ∈ N ,

independent of the initial value x ∈ X .

Here and throughout, brc is the greatest integer not exceeding the real number r, and

‖Pn(x, ·)− π(·)‖ ≡ sup
A⊆X

|Pn(x,A)− π(A)| represents the total variation distance between

the actual distribution of the Markov chain (after n steps, when initially started at the

point x), and the stationary distribution π(·).

Similarly, by transforming Proposition 1 of Cowles and Rosenthal (1998; based on

Theorem 12 of Rosenthal, 1995a; see also Roberts and Tweedie, 1999), we obtain

Proposition 2. Let P (x, ·) be the transition probabilities for a Markov chain on a state

space X , with stationary distribution π(·). Suppose for some function V : X → [0,∞),

some λ < 1 and Λ <∞, some ε > 0, some positive integers m and k0, and some d > 2Λ
1−λ ,

we have the drift condition

E(V (Xm) | X0 = x) ≤ λV (x) + Λ , x ∈ X ,

and also that the set {x ∈ X ;V (x) ≤ d} is (mk0, ε)-pseudo-small. Then for any 0 < r < 1

and M > 0, we have

‖L(Xk) − π‖ ≤ (1− ε)brk/mk0c + C0 (αA)−1
(
α−(1−rk0)Ar

)bk/mc
, k ∈ N ,

where

α−1 =
1 + 2MΛ +Mλd

1 +Md
; A = 1+2(λMd+MΛ) ; C0 =

(
1 +

MΛ

1− λ
+ME(V (X0))

)
.

If furthermore it is known that V (x) ≥ 1 for all x ∈ X , then it suffices that d > 2Λ
1−λ − 1,

and these values may be improved slightly to

α−1 = λ+
MΛ + (1− λ)(1−M)

1 + M
2 (d− 1)

; A = M(λd+ Λ) + (1−M) ;
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C0 =
M

2

(
Λ

1− λ
+ E(V (X0))

)
+ (1−M) .

For example, taking M = 1 in the V (x) ≥ 1 case, we obtain the simplification

α−1 = λ+
2Λ

d+ 1
; A = λd+ Λ ; C0 =

1

2

(
Λ

1− λ
+ E(V (X0))

)
.

Recall now that a Markov chain is stochastically monotone with respect to an ordering

� on X if, for all fixed z, we have that P(X1 � z|X0 = x1) ≥ P(X1 � z|X0 = x2)

whenever x1 � x2. For such chains, if X0 � Y0, then it is possible (cf. Kamae et al.,

1977; Lindvall, 1992, p. 134) to simultaneously construct {Xk} and {Yk} so that Xk � Yk
for all k. Intuitively, for stochastically monotone chains and small sets of the form C =

{x ∈ X ; x � c}, it is easier to prove convergence bounds, since if Xk � Yk for all k, then

(Xk, Yk) ∈ C × C whenever Xk ∈ C.

Therefore, transforming Theorem 2.2 of Roberts and Tweedie (2000; which builds on

the work of Lund and Tweedie, 1996 and Lund, Meyn, and Tweedie, 1996), we obtain the

following. We write ν(V ) for the expected value of V with respect to ν, and write Eπ
x(V )

for the expected value of V with respect to the stochastic majorant (with respect to �) of

a point mass at x and the stationary distribution π(·), defined by

Eπ
x(1(−∞,y]) = min

[
1(−∞,y](x), π ((−∞, y])

]
.

Proposition 3. Let P (x, ·) be the transition probabilities for a stochastically monotone

Markov chain on a totally ordered state space X , with stationary distribution π(·). Let

C ⊆ X be (1, ε)-pseudo-small, where C = {x ∈ X ; x � c} for some fixed c ∈ X , and let

V : X → [1,∞) be such that

E(V (X1) | X0 = x) ≤ λV (x) + b1C(x) , x ∈ X

for some λ < 1 and 0 ≤ b <∞. Then for n > log Eπ
x(V ) / log(λ−1), we have

‖Pn(x, ·)− π(·)‖ ≤ K(n+ η − ξ)ρn , n ∈ N .
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Here

K =
eε(1− ε)−ξ/η

η
,

ξ =
log Eπ

x(V )

log(λ−1)
, η =

log
(
λs+b−ε
λ(1−ε)

)
log(λ−1)

,

s = sup{V (z); z � x}, and ρ = (1− ε)η−1

.

In summary, any total variation distance convergence result based on pairwise cou-

pling, which makes use of small sets, can immediately be transformed into a corresponding

result using the weaker condition of pseudo-small sets.

Remark. Of course, there are many Markov chains which do not converge at all in total

variation distance, so that neither small nor pseudo-small sets can be used in the above

manner. Rather, other distance measures and other convergence techniques must be used;

see e.g. Su (1998).

4. Countable pseudo-small state spaces.

For Markov chains on countable state spaces, certain more explicit formulae are avail-

able. We begin with the standard

Proposition 4. Consider a Markov chain on a countable state space X , and let C ⊆ X

be any subset. Then for any n0 ∈ N, the subset C is (n0, εn0)-small with

εn0 =
∑
y∈X

inf
x∈C

Pn0(x, {y}) .

(Of course, we may have εn0
= 0 for all n0 ∈ N.) Furthermore, C is not (n0, ε

′)-small for

any ε′ > εn0
.

Proof. Define the probability measure ν(·) by

ν({z}) =
infx∈C P

n0(x, {z})∑
y∈X infx∈C Pn0(x, {y})

.

Then it is verified that Pn0(x, ·) ≥ εn0
ν(·) for all x ∈ C, with εn0

as above.
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Furthermore, if there were some ε′ > εn0 and some other probability measure ν′(·) such

that Pn0(x, ·) ≥ ε′ ν′(·) for all x ∈ C, then we could find z ∈ X with ε′ ν′({z}) > εn0
ν({z}).

But εn0
ν({z}) = infx∈C P

n0(x, {z}), so this gives a contradiction.

Using the concept of pseudo-small sets, we can improve the above result to

Proposition 5. Consider a Markov chain on a countable state space X , and let C ⊆ X

be any subset. Then for any n0 ∈ N, the subset C is (n0, εn0)-pseudo-small with

εn0 = inf
x,y∈C

∑
z∈X

min[Pn0(x, {z}), Pn0(y, {z})] .

(Of course, we may have εn0
= 0 for all n0 ∈ N.) Furthermore, C is not (n0, ε

′)-pseudo-

small for any ε′ > εn0
.

Proof. For x, y ∈ C, define the probability measure νxy(·) by

νxy({w}) =
min[Pn0(x, {w}), Pn0(y, {w})]∑
z∈X min[Pn0(x, {z}), Pn0(y, {z})]

.

Then it is verified that Pn0(x, ·) ≥ εn0 νxy(·) and Pn0(y, ·) ≥ εn0 νxy(·) for all x, y ∈ C,

with εn0 as above.

Furthermore, if there were some ε′ > εn0
and some other probability measures ν′xy(·)

such that Pn0(x, ·) ≥ ε′ ν′xy(·) and Pn0(y, ·) ≥ ε′ ν′xy(·) for all x, y ∈ C, then we could find

x, y ∈ C with ε′ >
∑
z∈X min[Pn0(x, {z}), Pn0(y, {z})]. We could then find w ∈ X with

ν′xy({w}) ≥ νxy({w}). It follows that

ε′ ν′xy({w}) ≥ ε′ νxy({w}) >
∑
z∈X

min[Pn0(x, {z}), Pn0(y, {z})] νxy({w})

= min[Pn0(x, {w}), Pn0(y, {w})] ,

giving a contradiction.
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Combining the above proposition with Proposition 1, we obtain the following corollary

(which also follows from Dobrushin, 1956, pp. 71 and 334).

Corollary 6. Consider a Markov chain on a countable state space X , with stationary

distribution π(·). Then for any n0 ∈ N, and any x ∈ X , we have

‖Pn(x, ·)− π(·)‖ ≤ (1− εn0)bn/n0c , n ∈ N ,

where

εn0
= inf

x,y∈X

∑
z∈X

min[Pn0(x, {z}), Pn0(y, {z})] .

(Again, we may have εn0
= 0 for all n0 ∈ N.)

As a special case of Corollary 6, we obtain an alternate proof of a special case of a

result of P. Bickel.

Corollary 7. (Bickel, 1999) Consider a Markov chain on a finite state space X , with

|X | = k. For n0 ∈ N and x ∈ X , let hn0
(x) = #{y ∈ X ; Pn0(x, {y}) > 0}. Suppose that

for some n0 ∈ N, we have hn0(x) > k
2 for all x ∈ X . Then the Markov chain is uniformly

ergodic.

Proof. Since hn0(x) > k
2 for all x ∈ X , it follows easily that∑

z∈X
min[Pn0(x, {z}), Pn0(y, {z})] > 0 for all x, y ∈ X .

Hence, with εn0
as in the previous corollary, we have εn0

> 0. The result now follows from

the previous corollary.

Remark. Of course, Corollary 7 can also be proved by showing that the chain is

irreducible and aperiodic, and then using standard theory. In fact, Bickel (1999) proves

more than Corollary 7, showing that the chain’s convergence rate can be controlled by

maxj
∑|X |
i=1 |Pn0(i, {j})−mediankP

n0(k, {j})|.

By analogy to Corollary 6, we obtain a similar result for continuous spaces when the

transition distributions all have a density. (We omit the proof.)

9



Proposition 8. Consider a Markov chain on a general state space X , with stationary

distribution π(·). Suppose that for some n0 ∈ N, we have that Pn0(x, dy) = fn0,x(y)m(dy)

for all x ∈ X , for some fixed σ-finite measure m(·) and some density functions fn0,x. Then

‖Pn(x, ·)− π(·)‖ ≤ (1− εn0
)bn/n0c , n ∈ N ,

where

εn0
= inf

x,y∈X

∫
min[fn0,x(z), fn0,y(z)] m(dz) .

5. Examples.

It is sometimes straightforward to construct pseudo-small sets, but far more difficult

to directly construct small sets. Alternatively, sometimes it is easy to construct both,

but the pseudo-small construction gives much better convergence bounds. This section

presents a number of different examples to illustrate this.

Example #1: A simple illustration.

For a simple example, consider the (non-reversible) Markov chain on X = {1, 2, 3}

with stationary distribution the uniform distribution U(·) on X , and with transition prob-

abilities given by

P =

 1/2 1/2 0
0 1/2 1/2

1/2 0 1/2

 .

Then the entire space X is (1, 1
2 )-pseudo-small (with νxy = δz(x,y) for appropriate points

z(x, y)). Hence, pseudo-smallness gives a convergence bound of

‖Pn(x, ·)− U(·)‖ ≤ 0.5n , n ∈ N ,

On the other hand, X is not (1, ε)-small for any ε > 0. Instead, the chain is only

(2, 3
4 )-small (with ν = U). Hence, smallness gives a convergence bound of

‖Pn(x, ·)− U(·)‖ ≤ 0.25bn/2c , n ∈ N .
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Of course, this second bound is virtually as good as the first (and indeed, both are

essentially optimal as can be seen by computing the eigenvalues of P ). However, the second

bound required computing with 2-step transition probabilities, not just 1-step transition

probabilities, and that may be infeasible on more complicated examples.

Example #2: 1-pseudo-small but only 3-small.

For another example, define a transition matrix P on the state space X = {1, 2, 3, 4, 5, 6}

by

3P =


1 1 0 0 0 1
0 1 1 1 0 0
1 0 1 0 1 0
1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

 .

Here the entire state space X is (1, 1
3 )-pseudo-small by inspection of Figure 1.

Figure 1. A graphical illustration of the possible transitions for Exam-
ple #2, of probability 1/3 each. (Not shown are the 1/3 probabilities
of staying in the same state.) Inspection reveals that from any 2 states,
there is some state which can be reached in 1 step from each. However
this Markov chain is neither 1-small nor 2-small.

However, by inspection X is not n0-small for n0 = 1 or 2. For n0 = 3, X is (3, 24
27 )-
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small, by taking ν(·) to be uniform and noting that P 3(x, {y}) ≥ 4
27 for all x, y ∈ X .

Remark. It is no coincidence that this example (which requires tripling n0 to move

from pseudo-smallness to smallness) is not reversible, while the previous example (which

required just doubling n0 to move from pseudo-smallness to smallness) is reversible; see

Proposition 13 below.

Example #3: Random-scan Gibbs sampler.

Consider the Random Scan Gibbs sampler for an everywhere-positive probability dis-

tribution π(·) on the state space X = {0, 1}d, i.e. the vertices of a d-dimensional hyper-

cube (so that |X | = 2d). Specifically, given Xk = (x1, . . . , xd), this Markov chain chooses

Xk+1 = (z1, . . . , zd) by (a) choosing Ik+1 uniform on the index set {1, 2, . . . , d}; (b) set-

ting zi = xi for i 6= Ik+1; and (c) for i = Ik+1, choosing zi to be 0 or 1 conditionally

independently, according to the probabilities

P(zi = 0) =
π({(x1, . . . , xi−1, 0, xi+1, . . . , xd)})

π({(x1, . . . , xi−1, 0, xi+1, . . . , xd)}) + π({(x1, . . . , xi−1, 1, xi+1, . . . , xd)})
(3)

and

P(zi = 1) =
π({(x1, . . . , xi−1, 1, xi+1, . . . , xd)})

π({(x1, . . . , xi−1, 0, xi+1, . . . , xd)}) + π({(x1, . . . , xi−1, 1, xi+1, . . . , xd)})
.

We let M = minx∈X π({x})/maxx∈X π({x}), so that 0 < M ≤ 1, and so that M
1+M ≤

P(zi = 0) ≤ 1
1+M in (3).

For this Markov chain, the entire state space X is both small and pseudo-small, but

the constants are different.

Regarding smallness, X is clearly not n0-small for any n0 < d, since it is impossible

for the chain to update all its components and hence move to the opposite corner of the

hypercube in this time. For n0 = d, the chain is (d, ε, π(·))-small, where Md d! d−d ≤ ε ≤

M−d d! d−d. To see this, note that there is probability d! d−d that I1, . . . , Id are all distinct,

and given that they are, the chance of ending up at a given site x ∈ X after d steps is

between Mdπ({x}) and M−dπ({x}). In fact, if π = π1 × . . . × πd is of product measure

form – e.g. uniform – then the coordinates move independently, so the factors of M are

not required, and we have ε = d! d−d exactly.
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Now consider pseudo-smallness, which involves minorising from just two states in X at

a time, x and y say. The worst case is clearly when x and y are at opposite corners of X . We

shall assume for formulaic simplicity that d is even. We shall compute the (d/2)-pseudo-

smallness constant by imagining running chains from x and y simultaneously, coupled so

that when one chain is updating site i, the other chain is updating site d+ 1− i. Consider

making d/2 updates. In order for all sites to have been updated by one chain or other after

d/2 updates, it is necessary for the chain started from x (say) to not repeat visiting any

one site i or its “complement” d+1−i. This happens with probability (d/2)! 2d/2 / dd/2. In

each of the first d updates (d/2 from each chain), there is a probability at least M/(1+M)

of matching the other chain in that coordinate. It follows that the chain is (d/2, ε̃)-pseudo-

small where

ε̃ ≥ Md

(1 +M)d
(d/2)! 2d/2

dd/2
.

In the case where π is uniform (so M = 1), Stirling’s formula gives (for large d)

that ε ≈ (2πd)1/2e−d for the d-smallness constant, while ε̃ ≈ (πd)1/2e−d/2 for the (d/2)-

pseudo-smallness constant. This indicates that ε̃ > ε for sufficiently large d, even though

it requires fewer steps (d/2 versus d) to achieve. We conclude that, for this example,

pseudo-smallness gives a clear speed-up in terms of convergence bounds, as compared to

smallness convergence bounds.

On the other hand, for much larger values of n0, we can obtain expressions for ε and

ε̃ in terms of Sterling numbers of the second kind (see for example Sloane, 2000). Here

we merely make a remark applicable again to the uniform case. Note that for the uniform

case, the Markov chain is equivalent to a random walk on the set X regarded as an additive

(abelian) group. For such random walks on groups, very precise results are known about

the eigenvalues and the convergence rate, cf. Diaconis (1988).

Indeed, by a simple expression for the probability that all sites have been updated after

n0 steps for large n0, we obtain that X is (n0, 1− d((d− 1)/d)n0)-small. Hence, an upper

bound on the Markov chain’s geometric rate of convergence is 1−d−1. However this is the

actual geometric rate of convergence, computed as in Diaconis (1988) (see also Rosenthal,

1995b). Thus, the approximations used here, although fairly simple, are actually giving

asymptotically the correct rate of convergence. Moreover, the pseudo-small bounds are
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even better, though the size of their improvement over the small set bounds diminishes

as n0 →∞.

Remark. We note that the results from Diaconis (1988) cannot be applied if π(·) is not

uniform.

Example #4: Convergence of multi-dimensional diffusions.

Another example is provided by the diffusion convergence bounding of Roberts and

Rosenthal (1996). Consider a diffusion process {Xs}s≥0 defined on Rk by dXs = µ(Xs)ds+

dBs, for some function µ : Rk → R, where {Bs}s≥0 is standard k-dimensional Brownian

motion. In dimensions larger than 1, it is very difficult to directly construct a coupling for

such a diffusion that works for all points in a subset simultaneously. However, to construct

a coupling for just two points at a time is relatively straightforward.

Based on that fact, Roberts and Rosenthal (1996) proved the following result. To

state it, for c,d ∈ Rk, we say a set S ⊆ Rk is a “[c,d]-medium set” if ci ≤ µi(x) ≤ di for

all x ∈ S, for 1 ≤ i ≤ k.

Theorem 9. Let {Xs} be a multi-dimensional diffusion process defined by dXs =

µ(Xs)ds + dBs. Suppose C is contained in
k∏
i=1

[αi, βi], and let D = sup
x,y∈C

‖x − y‖2 be the

L2 diameter of C. Let S =
k∏
i=1

[ai, bi], where ai < αi < βi < bi for each i, and suppose

S is a [c,d]-medium set. Set L = ‖d − c‖2 ≡
(

k∑
i=1

(di − ci)2

)1/2

. Then for any t > 0,

there exists an ε > 0 such that C is (t, ε)-pseudo-small. Moreover, given any t0 > 0, for all

t ≥ t0, we have that C is (t, ε)-pseudo-small where

ε = Φ

(
−D − t0L√

4t0

)
+ e−DL/2Φ

(
t0L−D√

4t0

)
− 2

k∑
i=1

Φ

(
−(αi − ai)− t0ci√

t0

)
− 2

k∑
i=1

e−2(αi−ai)ciΦ

(
t0ci − (αi − ai)√

t0

)

− 2
k∑
i=1

Φ

(
−(bi − βi) + t0di√

t0

)
− 2

k∑
i=1

e2(bi−βi)diΦ

(
−t0di − (bi − βi)√

t0

)
.

Here Φ(z) =
∫ z
−∞

1√
2π
e−s

2/2ds is the cumulative distribution function of a standard normal

distribution.
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This result proves, in particular, that the subsets C described above are pseudo-small

sets for the multi-dimensional diffusion considered. (It also gives a quantitative bound on

the value of ε, though this bound may not be positive for all values of the parameters.) In

light of Theorem 12 below, we see now that the pseudo-small sets constructed in Theorem 9

are in fact small. (This fact is not otherwise obvious, though it can also be proved using

general Markov chain theory.) Indeed, aperiodicity and φ-irreducibility are both clearly

satisfied. Furthermore, since the above result is stated for discrete time jumps t > 0,

we see that Theorem 12 applies directly and there is no concern over the fact that the

discrete-time process arises from an underlying process which is in continuous time.

On the other hand, we have no control over the smallness constants (as opposed to

pseudo-small constants) for these sets C. Thus, to obtain quantitative bounds on the

convergence rates of these diffusions, it is essential to use the pseudo-small construction.

For details, see Roberts and Rosenthal (1996).

Example #5: One-dimensional monotone shifts.

The previous two examples were highly multi-dimensional, and indeed it appears that

pseudo-smallness may be most advantageous in high dimensions.

At the “opposite extreme”, consider a one-dimensional example, where the transition

densities are just monotone shifts of each other. Specifically, let X ⊆ R, let f : R→ [0,∞)

be unimodal and have Lebesgue integral 1, let φ : X → X be monotone (i.e. φ(x) ≤ φ(y)

whenever x ≤ y), and define Markov chain transition probabilities on X by

P (x, dy) = f(y − φ(x)) dy .

Then we have

Proposition 10. For a one-dimensional monotone shift Markov chain as above, if a

subset C ⊆ X is (1, ε)-pseudo-small, then C is (1, ε)-small with the same value of ε. That

is, one-step pseudo-smallness provides absolutely no improvement over one-step smallness

in this case.
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Proof. Let m be the mode of f , so that m + φ(x) is the mode of P (x, ·). Let L =

infx∈C(m+ φ(x)) and R = infx∈C(m+ φ(x)) be the left and right extremes, respectively,

of the modes from C.

Now, by the unimodality of f , we have that for a ≤ x ≤ b,

f(y − φ(a)) ≤ f(y − φ(x)) , y ≤ m+ φ(x) ,

and

f(y − φ(b)) ≤ f(y − φ(x)) , y ≥ m+ φ(x) .

Hence,

inf
a≤x≤b

f(y − φ(x)) = min [f(y − φ(a)), f(y − φ(b))] .

It follows from this that∫
inf
x∈C

a≤x≤b

f(y − φ(x)) dy =

∫
min [f(y − φ(a)), f(y − φ(b))] dy . (4)

Now, in (4), the left-hand side is the largest ε such that the set C∩ [a, b] is (1, ε)-small,

while the right-hand side is the largest ε such that the set {a, b} is (1, ε)-pseudo-small.

(Compare Proposition 8.) Hence, if C has a minimal state a and maximal state b, then

we can choose these values of a and b in (4), to see that the 1-pseudo-small constant for

C is no larger than the 1-small constant, thus giving the result.

If C does not have minimal and/or maximal states, then the result still follows

from (4), by instead choosing sequences {an} ⊆ C and/or {bn} ⊆ C, with an ↘ inf(C)

and/or bn ↗ sup(C). For such a choice, the left-hand side of (4) converges to the 1-small

constant for C, while the right-hand side converges to an upper bound on the 1-pseudo-

small constant. It again follows that the 1-pseudo-small constant for C is no larger than

the 1-small constant.
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Remark. One might think that Proposition 10 could be generalised to any stochastically

monotone chain (not just monotone shifts), but this is false. For a simple example, consider

simple symmetric random walk on X = {1, 2, 3} with holding boundaries, so that

2P =

 1 1 0
1 0 1
0 1 1

 .

This Markov chain is clearly stochastically monotone, and is even “realisably monotone” in

the sense of Fill and Machida (1999). Furthermore, the subset X is clearly (1, 1
2 )-pseudo-

small. However, X is clearly not (1, ε)-small for any ε > 0. The problem here is that,

while the chain is realisably monotone, there is no way to realise monotonicity and realise

the coupling implied by being (1, 1
2 )-pseudo-small (i.e. have the chains started at 1 and 3

become equal with probability 1
2 ) simultaneously. Indeed, as soon as we ensure that those

two chains become equal with probability 1
2 , we can no longer maintain the monotonic

structure, and hence can conclude nothing about smallness.

6. Relation of pseudo-small to small.

As discussed in the introduction, small sets have many uses. One is the pairwise

coupling construction described in the Appendix, where pseudo-small sets do just as well.

Others include regenerations and coalescence, where pseudo-small sets cannot be used in

place of small sets.

Because of this complex relationship, we now explore further the implications of

pseudo-small sets for smallness. We shall show (Theorem 12 below) that, for a φ-irreducible

and aperiodic Markov chain, pseudo-smallness does indeed imply smallness (though per-

haps with much worse values for n0 and ε).

We begin with a lemma. (Recall that a state space is countably generated if its σ-

algebra is the smallest σ-algebra containing some fixed countable collection of measurable

sets; this is a very weak condition which is satisfied by virtually all examples of interest.)

Lemma 11. Let S be an (n0, ε)-pseudo-small subset for a φ-irreducible, aperiodic Markov

chain on a countably generated state space X . Then there is a small set C ⊆ X and δ > 0

such that Pn0(x,C) ≥ δ for all x ∈ S.
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Proof. Choose any fixed point x0 ∈ X .

By Meyn and Tweedie (1993, Proposition 5.2.4 (ii)), we can write X as a countable

union of small sets. But for an aperiodic, φ-irreducible chain, a finite union of small sets

is petite and hence small (cf. Meyn and Tweedie, 1993, Proposition 5.5.5 and Theorem

5.5.7).

We conclude that we can find small sets which are arbitrarily large. In particular,

there is a small set C ⊆ X with Pn0(x0, C) ≥ 1− ε
2 .

Now, let x ∈ S. Then there is ν = νx0,x with Pn0(x0, ·) ≥ εν(·) and Pn0(x, ·) ≥

εν(·). This implies that we can write Pn0(x0, ·) = (1 − ε)R(·) + εν(·), where R(·) =

1
1−ε (P

n0(x0, ·)− εν(·)) is also a probability measure. In particular, (1− ε)R(C) + εν(C) =

Pn0(x0, C) ≥ 1− ε
2 , whence

εν(C) ≥ (1− ε

2
)− (1− ε)R(C) ≥ (1− ε

2
)− (1− ε) =

ε

2
.

Hence, ν(C) ≥ 1
2 . By the pseudo-minorisation condition, it then follows that Pn0(x,C) ≥

ε ν(C) ≥ ε
2 , for x ∈ S. The result therefore follows with δ = ε/2.

We can now prove

Theorem 12. Let S be a pseudo-small subset for a φ-irreducible, aperiodic Markov chain

on a countably generated state space X . Then S is also small (though not necessarily with

the same values of n0 and ε).

Proof. Let S be (n0, ε)-pseudo-small.

By Lemma 11, there is an (n1, ε1, ν1)-small set C and δ > 0 with Pn0(x,C) ≥ δ for

all x ∈ S.

But this implies that Pn0+n1(x, ·) ≥ δε1ν1(·) for all x ∈ S. Hence, S is (n0 +

n1, δε1, ν1)-small.

In the special case of finite reversible chains, we can make the connection between

pseudo-small and small even more explicit, as follows.
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Proposition 13. Let C be n0-pseudo-small for an irreducible, reversible Markov chain

on a finite state space. Then C is 2n0-small.

Proof. Recall that reversibility means that Pn0(x, {y})π({x}) = Pn0(y, {x})π({y}) for

all states x and y, where π(·) is a stationary distribution. By irreducibility, π(·) is unique,

and furthermore π({x}) > 0 for all x. We conclude that

Pn0(x, {y}) > 0 if and only if Pn0(y, {x}) > 0 . (5)

Now, let x, y ∈ C. By pseudo-smallness, there is ε > 0 and νxy(·) with Pn0(x, ·) ≥

ενxy(·) and Pn0(y, ·) ≥ ενxy(·). Choose any state z with νxy({z}) > 0. Then Pn0(x, {z}) >

0 and Pn0(y, {z}) > 0. From (5), this implies that Pn0(z, {y}) > 0, whence P 2n0(x, {y}) ≥

Pn0(x, {z})Pn0(z, {y}) > 0.

We conclude that P 2n0(u, {v}) > 0 for all u, v ∈ C. Since C is finite, it now follows

(cf. Proposition 4) that C is 2n0-small.

Of course, Proposition 13 does not hold for non-reversible chains, cf. Example #2

above.

More generally, we have the following.

Theorem 14. Let C be (n0, ε, {νxy})-pseudo-small for a φ-irreducible, reversible (with

respect to π(·)) Markov chain on a general state space X . Then C is (2n0, ε
2Kπ(C), π

∣∣
C

)-

small, where
[
π
∣∣
C

]
(dw) = π(dw)1C(w) / π(C), and where

K = inf
x,y∈C

Eνxy

[
dνxy
dπ

]
. (6)

(Of course, we may have K = 0.)
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Proof. We compute using reversibility and pseudo-smallness that, for x, y ∈ C,

P 2n0(x, dy) =

∫
z∈X

Pn0(x, dz)Pn0(z, dy)

=

∫
z∈X

Pn0(x, dz)Pn0(y, dz)
π(dy)

π(dz)

≥ ε2
∫
z∈X

νxy(dz)νxy(dz)
π(dy)

π(dz)

= ε2π(dy)

∫
z∈X

νxy(dz)
νxy(dz)

π(dz)

= ε2π(dy)Eνxy
(
dνxy
dπ

) .

Hence, for x ∈ C, we have

P 2n0(x, dy) ≥ ε2Kπ(dy)1C(y) = ε2Kπ(C)
[
π
∣∣
C

]
(dy) ,

with K as in (6). The result follows.

7. Issues of irreducibility and aperiodicity.

Theorem 12 and other results above relied on having a φ-irreducible, aperiodic chain.

We now consider to what extent these results are affected when the assumptions of φ-

irreducibility and aperiodicity are dropped.

We begin with some simple counter-examples.

Proposition 15. For a Markov chain which is reducible or periodic, a subset C may be

pseudo-small without being small.

Proof. Consider the matrix

P =


0 0 0 .5 .5 0
0 0 0 0 .5 .5
0 0 0 .5 .5 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
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Then the chain is reducible (but aperiodic), and {1, 2, 3} is pseudo-small but is not small.

If instead we take

P =


0 0 0 .5 .5 0
0 0 0 0 .5 .5
0 0 0 .5 .5 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

 ,

then the chain is periodic (but φ-irreducible where φ(·) is, say, a point-mass at the point

6), and {1, 2, 3} is pseudo-small but is not small.

If the entire state space is pseudo-small, then some positive results can be obtained.

We have

Lemma 16. If the entire state space is pseudo-small, then the chain is aperiodic.

Proof. If the chain were periodic, then we would have disjoint non-empty subsets

X1,X2, . . . ,Xd (for some d ≥ 2) with P (xi,Xi+1 mod d) = 1 for xi ∈ Xi. It follows

that Pn0(x1, ·) ∧ Pn0(x2, ·) = 0 for xi ∈ Xi, for any n0 ∈ N. This contradicts pseudo-

smallness.

Recall now that a point j ∈ X on a countable state space is recurrent if Pj(Xn = j

for some n ≥ 1) = 1. Then we also have

Lemma 17. If the entire state space is pseudo-small and countable, with at least one

recurrent point, then the chain is φ-irreducible.

Proof. Let j ∈ X be recurrent. If the chain were not φ-irreducible, then we must have

Pi(τj <∞) = 0 for some i ∈ X (otherwise we could take φ = δj).

Suppose that for some k ∈ X and n0 ∈ N we had Pn0(i, {k}) > 0 and Pn0(j, {k}) > 0.

Since j is recurrent, this implies P (k, {j}) = 1. But since Pi(τj < ∞) = 0, this implies

P (k, {j}) = 0.
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We conclude that there is no k ∈ X and n0 ∈ N with Pn0(i, {k}) > 0 and Pn0(j, {k}) >

0. This means that Pn0(i, ·) ∧ Pn0(j, ·) = 0. In particular, the entire state space is not

pseudo-small.

From these two lemmas, we obtain

Theorem 18. Consider a Markov chain (not necessarily φ-irreducible or aperiodic) on a

countable state space, having at least one recurrent point (which always holds if the state

space is finite). If the entire state space is pseudo-small, then the entire state space is

small. (Hence, a stationary distribution exists and the chain is uniformly ergodic.)

Proof. Let X be (n0, ε)-pseudo-small. By Lemma 16, the chain is aperiodic. By

Lemma 17, the chain is φ-irreducible. Hence, the result follows from Theorem 12.

Remark. We believe that Lemma 17 and Theorem 18 continue to hold for general

chains, not just for countable chains with at least one recurrent point, though we are not

yet able to prove this.

8. Convergence via a monotone dominating chain.

We consider now the situation in which a Markov chain P1 is stochastically domi-

nated by another Markov chain P2, where P1 has known minorisation properties and P2

is stochastically monotone, and we wish to combine this information so that we can use

standard stochastically-monotone-convergence-bounds of previous authors (e.g. Proposi-

tion 3 above). We shall see that it is possible to construct multiple copies of the P1 chain

so that they all simultaneously respect the dominance of the P2 chain. This will allow

us to establish both pseudo-smallness and smallness conditions for the P1 chain, thereby

allowing for quantitative bounds which make use of the stochastic monotonicity.

More formally, let P1(x, ·) and P2(x, ·) be two Markov chains defined on a totally

ordered state space X . Let π(·) be a stationary distribution for P1. Suppose that for some
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fixed c ∈ X , the subset C = {z ∈ X ; z � c} is (n0, ε, ν)-small for P1. Suppose further that

P2 is stochastically monotone, and that P2 stochastically dominates P1, in the sense that

P2(x, {z ∈ X ; z � y}) ≥ P1(x, {z ∈ X ; z � y}) , x, y ∈ X .

Finally, suppose that a drift condition is satisfied by P2; specifically, there is a function

V : X → [1,∞) and λ < 1 and b <∞ such that∫
V (y)P2(x, dy) ≤ λV (x) + b1C(x) , x ∈ X . (7)

We would like to get convergence bounds on ‖Pn1 (x, ·) − π(·)‖. We know a small set

C for P1, however P1 is not assumed to be stochastically monotone. Can we make use of

the stochastic monotonicity of the dominating chain P2, to allow us to use the bounds of

Proposition 3 anyway?

At first this may appear to be fairly straightforward. Indeed, since P2 stochastically

dominates P1, we see by the nature of C that the P1 chain will be in C whenever the P2

chain is in C. Thus, it appears that we can use the drift condition (7) to bound the return

times of the P1 chain to C, and then use the smallness of C to get couplings for the P1

chain once it is in C, thus producing regeneration times of the P1 chain.

The problem with this approach is that it is not obvious that we can preserve the

ordering of the two chains, while at the same time giving two different copies of the P1

chain the option of coupling (with probability ε) or not coupling (with probability 1 − ε)

when they’re both in C.

We wish to show that it is indeed possible to preserve the ordering in this sense. We

begin with a lemma. For measures R1 and R2 on X , we write R1

st.
≤ R2 to mean that

R1({z ∈ X ; z � y}) ≤ R2({z ∈ X ; z � y}) for all y ∈ X .

Lemma 19. Let R1, R2, and ν be probability measures, and let 0 < ε ≤ 1. Suppose

R1

st.
≤ R2, and also R1(·) ≥ εν(·). Then there is a probability measure Q1 such that

R2(·) ≥ εQ1(·) and ν
st.
≤ Q1, and furthermore R1 − εν

st.
≤ R2 − εQ1.
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Proof. Construct a probability space containing random variables X and I such that

P (I = 1) = ε = 1 − P(I = 0), such that L(X | I = 1) = ν, and L(X) = R1. (This is es-

sentially the standard minorisation construction, cf. the Appendix.) By the upward kernel

construction of Strassen’s Theorem (see for example Lindvall, 1992, Chapter 4, Section 3),

this probability space can be extended to support a further random variable Y such that

L(Y ) = R2 and P(X ≤ Y ) = 1. We then set Q1 = L(Y | I = 1). The conclusions follow

by inspection, since R1 − εν = L(X | I = 0) and R2 − εQ1 = L(Y | I = 0).

Using this lemma, we prove a second, more substantial lemma. Its conclusion is

similar to that of Lemma 19, except that this time we find a single Q which works for all

R1 simultaneously.

Lemma 20. Let R2 and ν be probability measures, and let 0 < ε ≤ 1. Then there is

a probability measure Q such that R2 ≥ εQ and ν
st.
≤ Q, and furthermore for all R1 with

R1

st.
≤ R2 and R1(A) ≥ εν(A) for all A, we have and R1 − εν

st.
≤ R2 − εQ.

Proof. For x ∈ X , write (−∞, x) as shorthand for the subset {z ∈ X ; z ≺ x}. In terms

of this, define a measure M on X by

M(dx) = min [R2(dx), εν(dx) + εν((−∞, x))−M((−∞, x))] .

Formally, this means that if εν((−∞, x)) −M((−∞, x)) > 0 then M has positive mass

εν((−∞, x)) −M((−∞, x)) at x, while if εν((−∞, x)) −M((−∞, x)) = 0 then M(dx) =

min [R2(dx), εν(dx)]. (Intuitively, the first argument of the min ensures that M ≤ R2,

and the second ensures that M
st.
≥ εν.) We then set Q = ε−1M , so that M = εQ.

Intuitively, M is the minimal (in the stochastic ordering sense, not in the sense of mi-

norisation) probability distribution which is a minorisation for R2 and which also stochas-

tically dominates ν.

More formally, given R1, let Q1 be as in Lemma 19. Then we see by inspection that

Q1 satisfies the properties

Q1(dx) ≤M(dx) +M ((−∞, x))−Q1 ((−∞, x)) .
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(This is really two inequalities in one: It bounds the atomic components, and furthermore

if the atomic components are equal then it bounds the continuous components.) It follows

that

εQ1 ((−∞, x)) ≤M ((−∞, x)) , x ∈ X . (8)

Hence, in particular, M(X ) ≥ εQ1(X ) = ε. Furthermore, since R1 − εν
st.
≤ R2 − εQ1, it

follows from (8) that also R1 − εν
st.
≤ R2 −M .

It now follows that the Q constructed above satisfies all of the required properties.

This completes the proof.

This lemma allows us to conclude, finally, the key result of this section.

Corollary 21. Let P1(x, ·) and P2(x, ·) be two Markov chains defined on a totally ordered

state space X . Suppose that P2 is stochastically monotone, and that P2 stochastically

dominates P1. Suppose C = {z ∈ X ; z � c} is a small set for P1, with minorising measure

εν. Then Markov chains {X1,x
n }x≤a and {X2,a

n } can be defined, for each x ∈ R, so that

{Xi,x
n } follows the transitions Pi, and Xi,x

0 = x, and the X1,x
n regenerate simultaneously

according to εν, and such that X1,x
n � X2,a

n for all n.

This corollary shows that it is possible to allow multiple copies of the P1 chain to

either regenerate (with probability ε) or not (with probability 1 − ε), while at the same

time ensuring that the P2 chain stochastically dominates each copy of the P1 chain at all

times. This allows for the standard monotone-chain coupling construction, using either

small or pseudo-small sets, in the proof of the analogue of Proposition 3. Hence, this allows

us to conclude the bounds of Proposition 3 in our more general situation, as follows.

Theorem 22. Let P1(x, ·) and P2(x, ·) be the transition probabilities for two Markov

chains on a totally ordered state space X . Let π(·) be a stationary distribution for P1.

Suppose that for some c ∈ X , the set C = {z ∈ X ; z � c} is (1, ε, ν)-small for P1. Suppose

further that P2 stochastically dominates P1, that P2 is stochastically monotone, and that

P2 satisfies (7) for some λ < 1 and 0 ≤ b < ∞. Then for n > log Eπ
x(V ) / log(λ−1), we
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have

‖Pn1 (x, ·)− π(·)‖ ≤ K(n+ η − ξ)ρn , n ∈ N ,

where K, ξ, η, s, and ρ are as in Proposition 3.

Remarks.

(i) If P2 = P1, then Theorem 22 reduces directly to Proposition 3.

(ii) If the function V is itself monotone with respect to the ordering �, i.e. if V (x) ≤

V (y) whenever x � y, then (7) and the stochastic dominance immediately implies

a corresponding drift condition for P1. We can thus apply Proposition 3 directly,

without requiring Theorem 22 at all. However, if V is not assumed to be monotone

in this sense, then such a direct approach does not appear to be possible.
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APPENDIX: Constructing pairwise couplings from small sets.

Small sets have many uses. The one most relevant to the current paper is for pairwise

coupling constructions, which we now describe. This construction is standard; for further

details, see e.g. Meyn and Tweedie (1993), Rosenthal (1993, 1995a), and Roberts and

Tweedie (1999).

Given a Markov chain P (x, ·) on a state space X , with initial distribution ν(·), station-

ary distribution π(·), and (n0, ε, ν)-small set C ⊆ X , we proceed as follows. We construct

initial random variables X0 ∼ ν(·) and Y0 ∼ π(·) arbitrarily (say, independently). Then,

inductively for k = 1, 2, . . ., given values of Xkn0 and Ykn0 , we construct X(k+1)n0
and

Y(k+1)n0
by:

1. If Xkn0
= Ykn0

, then we simply choose

X(k+1)n0
= Y(k+1)n0

∼ Pn0(Xkn0
, ·) .

2. If Xkn0
6= Ykn0

, then:
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(a) If (Xkn0 , Ykn0) ∈ C ×C, then we flip an independent coin having probability ε of

coming up heads, and then:

(i) If the coin is heads, we choose

X(k+1)n0
= Y(k+1)n0

∼ ν(·)

and set T = (k + 1)n0.

(ii) If the coin is tails, we choose

X(k+1)n0
∼ 1

1− ε
[Pn0(Xkn0

, ·)− ε ν(·)]

and

Y(k+1)n0
∼ 1

1− ε
[Pn0(Ykn0

, ·)− ε ν(·)] ,

conditionally independently (say).

(b) If (Xkn0
, Ykn0

) 6∈ C × C, then we choose

X(k+1)n0
∼ Pn0(Xkn0 , ·)

and

Y(k+1)n0
∼ Pn0(Ykn0

, ·) ,

conditionally independently (say).

The stopping time T is thus defined in step 2(a)(i) above; we set T =∞ if case 2(a)(i) never

arises. To complete the construction (if n0 > 1), we “fill in” the values Xm and Ym, for m

not a multiple of n0, as follows. For k = 0, 1, 2, . . ., we chooseXkn0+1, Xkn0+2, . . . Xkn0+n0−1

jointly from their Markov chain distribution, conditional on the constructed values of Xkn0

and X(k+1)n0
. For k = 0, 1, 2, . . . , T/n0, we choose Ykn0+1, Ykn0+2, . . . Ykn0+n0−1 condition-

ally independently (say), jointly from their Markov chain distribution, conditional on the

constructed values of Ykn0 and Y(k+1)n0
. For m > T , we simply set Ym = Xm.

The key points of this construction are that

(I) For all m, we have

L(Xm+1 |X0, . . . , Xm, Y0, . . . , Ym) = P (Xm, ·)
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and

L(Ym+1 |X0, . . . , Xm, Y0, . . . , Ym) = P (Ym, ·) .

(In the language of Rosenthal, 1997, this says that we have constructed a faithful

coupling of the two chains.)

(II) Because of (I), stationarity of π(·), and the fact that Y0 ∼ π(·), we have

L(Ym) = π(·) , m = 0, 1, 2, . . .

(III) If T ≤ m, then

Xm = Ym .

In the language of coupling theory, property (III) says that T is a coupling time (see

e.g. Lindvall, 1992). Hence, the coupling inequality says that

‖L(Xn)− π(·)‖ ≤ P(T > n) .

This fact can be used to bound the total variation distance between the distribution of the

Markov chain after n steps, and the stationary distribution π(·).

Now, if C is (n0, ε, {νxy})-pseudo-small instead of being small, then the above con-

struction can still be used. One merely has to replace ν(·) by νXkn0
Ykn0

(·) throughout item

2(a) above. Aside from this, the construction works without change. Indeed, that is the

key observation of the current paper.
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