
Computational Statistics (2021) 36:2789–2811
https://doi.org/10.1007/s00180-021-01095-2

ORIG INAL PAPER

JumpMarkov chains and rejection-free Metropolis
algorithms

Jeffrey S. Rosenthal1 · Aki Dote2,3 · Keivan Dabiri2 · Hirotaka Tamura3 ·
Sigeng Chen1 · Ali Sheikholeslami2

Received: 25 April 2020 / Accepted: 3 March 2021 / Published online: 13 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
We consider versions of the Metropolis algorithm which avoid the inefficiency of
rejections. We first illustrate that a natural Uniform Selection algorithm might not
converge to the correct distribution. We then analyse the use of Markov jump chains
which avoid successive repetitions of the same state. After exploring the properties
of jump chains, we show how they can exploit parallelism in computer hardware to
produce more efficient samples. We apply our results to the Metropolis algorithm, to
Parallel Tempering, to a Bayesian model, to a two-dimensional ferromagnetic 4×4
Ising model, and to a pseudo-marginal MCMC algorithm.

1 Introduction

The Metropolis algorithm (Metropolis et al. 1953; Hastings 1970) is a method of
designing a Markov chain which converges to a given target density π on a state space
S. Such Markov chain Monte Carlo (MCMC) algorithms have become extremely
popular in statistical applications and have led to a tremendous amount of research
activity (see e.g. Brooks et al. 2011 and the many references therein).

The Metropolis algorithm produces a Markov chain X0, X1, X2, . . . on S, as fol-
lows. Given the current state Xn , the Metropolis algorithm first proposes a new state
Yn from a symmetric proposal distribution Q(Xn, ·). It then accepts the new state (i.e.,

sets Xn+1 = Yn) with probability min
(
1, π(Yn)

π(Xn)

)
, i.e. if Un <

π(Yn)
π(Xn)

where Un is

an independent Uniform[0,1] random variable. Otherwise, it rejects the proposal (i.e.,

B Jeffrey S. Rosenthal
jeff@math.toronto.edu

1 Department of Statistical Sciences, University of Toronto, Toronto, Canada

2 Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada

3 Fujitsu Laboratories Ltd., Kanagawa, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-021-01095-2&domain=pdf
http://orcid.org/0000-0002-5118-6808

2790 J. S. Rosenthal et al.

sets Xn+1 = Xn). This simple algorithm ensures that the Markov chain has π as a
stationary distribution.

With this algorithm, the expected value Eπ (h) of a function h : S → R can then
be estimated by the usual estimator, êK = 1

K

∑K
n=1 h(Xn). The Strong Law of Large

Numbers (SLLN) for Markov chains (Meyn and Tweedie 1993, Theorem 17.0.1) says
that assuming that Eπ (h) is finite, and that the Markov chain is irreducible with sta-
tionary distribution π , we must have limK→∞ êK = Eπ (h), i.e. this estimate êK
is consistent. For example, if h = 1A is the indicator function of an event A, then
limK→∞ êK = P(A). Or, if h = gk is a power of some other function g, then
limK→∞ êK = Eπ (h) = Eπ (gk). Consistency is thus a useful property which guar-
antees asymptotically accurate estimates of any quantity of interest.

One problem with the Metropolis algorithm is that it might reject many proposals,
leading to inefficiencies in its convergence. Indeed, in certain contexts the optimal
Metropolis algorithm should reject over three quarters of its proposals (Roberts et al.
1997; Roberts andRosenthal 2001). Each rejection involves sampling a proposed state,
computing a ratio of target probabilities, anddecidingnot to accept the proposal, only to
remain at the current state. These rejections are normally considered to be a necessary
evil of theMetropolis algorithm.However, recent technological advances have allowed
for exploiting parallelism in computer hardware, computing all potential acceptance
probabilities at once, thus allowing for the possibility of skipping the rejection steps
and instead accepting a move every time. Such rejection-free algorithms can be very
efficient, but they must be executed correctly or they can lead to biased estimates, as
we now explore.

2 The Uniform Selection algorithm

A first try at a rejection-free Metropolis algorithm might be as follows. Suppose that
froma state x , one of a (large, finite) collection of states y1, y2, . . . , yk (all distinct from
x) would have been proposed uniformly at random. Then, sampleU ∼ Uniform[0, 1],
and consider the sub-collection of states C := {yi : U < π(yi)/π(x)} that “would”
have been accepted, and then pick one of the states in C uniformly at random. (If C
happens to be empty, then we immediately re-sample U and try again. Technically
speaking, that would be a “rejection”, though its probability is small.) This algorithm
will always move somewhere, so there is no rejection. However, this algorithm is
different from true MCMC, and might not converge to π , as we now show.

Example 1 Suppose the state space S = {1, 2, 3}, with π(1) = 1/2, π(2) = 1/3, and
π(3) = 1/6, as in Fig. 1, and suppose that from each state x , the chain proposes to
move either to x − 1 or to x + 1 with probability 1/2 each (where proposals to 0 or
to 4 are always rejected).

In this example, the Metropolis algorithm would have Markov chain transition
probabilities as in Fig. 2, which are easily computed to have the correct limiting
stationary distribution π = (1/2, 1/3, 1/6) as they must.

However, the Uniform Selection algorithm would have Markov chain transition
probabilities as in Fig. 3, with limiting stationary distribution easily computed to

123

Jump Markov chains and rejection-free Metropolis algorithms 2791

1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

pi
(x
)

Fig. 1 The target distribution for Example 1

Fig. 2 The Metropolis chain for
Example 1

1
2/3

1/3

2

1/4

1/4

1/2

3
1/2

1/2

Fig. 3 The Uniform Selection
chain for Example 1

1
2/3

1/3

2

1/4

3/4

3
1/2

1/2

instead be (3/5, 4/15, 2/15)which is significantly different. For example, from state 2,
the usualMetropolis algorithmwould accept a proposedmove to state 1 with probabil-
ity 1, andwould accept a proposedmove to state 3with probability (1/6)/(1/3) = 1/2,
so it would be twice as likely to move to state 1 as to move to state 3. But for the above
Uniform Selection version, if U > 1/2 then the subset C would consist of just the
single state 1 so it would alwaysmove to state 1, or ifU < 1/2 then the subsetC would
consist of the two states 1 and 3 so itwouldmove to state 1 or state 3with probability 1/2
each, so overall it wouldmove to state 1 with probability (1/2)(1)+(1/2)(1/2) = 3/4
or to state 3 with probability (1/2)(0) + (1/2)(1/2) = 1/4, i.e. it would now be three
times as likely to move to state 1 as to move to state 3, not twice. This illustrates that
this Uniform Selection algorithm will converge to the wrong distribution, i.e. it will
fail to converge to the correct target distribution. ��

123

2792 J. S. Rosenthal et al.

0 1 2 3 4 5 6 7 8 9 10

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

x

pi
(x
)

Fig. 4 Part of the target distribution for Example 2

Our second example shows that Uniform Selection can even cause a Markov chain
to become transient.

Example 2 Suppose now that the state space is the set S = {0, 1, 2, 3, . . .} of all
non-negative integers, with target distribution π defined by writing the argument x as
x = 4a+ b where 0 ≤ b ≤ 3 is the remainder upon dividing x by 4, and defining (see
Fig. 4)

π(x) = π(4a + b) = 1

135
(8/9)a 2b , 0 ≤ b ≤ 3, a = 0, 1, 2, . . .

As a check,

∞∑
x=0

π(x) =
∞∑
a=0

1

135
(8/9)a (20 + 21 + 22 + 23) = 1

135

(
1

1 − (8/9)

)
(15) = 1 ,

i.e. π is a valid probability distribution. TheMetropolis algorithm chain for this exam-
ple is given by Fig. 5, and it has the correct limiting stationary distribution π , as it
must.

However, the Uniform Selection chain is instead given by Fig. 6. We prove in the
Appendix that this Uniform Selection chain is transient, and in fact:

Proposition 1 If the Uniform Selection chain for Example 2 begins at state 4a for
some positive integer a ≥ 2, then the probability it will ever reach the state 3 is
≤ (8/9)a−1 < 1.

123

Jump Markov chains and rejection-free Metropolis algorithms 2793

0
1/2

1/2

1

1/4

1/2

1/4

2

1/4

1/2

1/4

3

25/36

1/18

1/4

4

1/2

1/2

5

1/4

1/4

Fig. 5 The Metropolis chain for Example 2

Fig. 6 The Uniform Selection
chain for Example 2

0

1

1

3/4

1/4

2

3/4

1/4

3

1/9

8/9

4

1/2

1/2

5

1/4

That is, the Uniform Selection chain might fail to ever reach the optimal value. For
example, if X0 = 100, then a = 25 and the probability of failure is at least 1 −
(8/9)24 > 0.94 = 94%. This is also illustrated by the simulation1 in Fig. 7 with initial
state X0 = 100. ��

These examples show that the Uniform Selection algorithm may converge to the
wrong limiting distribution, and thus should not be used for sampling purposes.

Example 2 also has implications for optimisation. Any Markov chain which gives
consistent estimators can be used to find the mode (maximum value) of π , either by
running the chain for a long time and taking its empirical sample mode, or by keeping
track of the largest value π(x) over all samples visited. However, Example 2 shows
that a Uniform Selection chain could be transient and thus fail to find or converge
to the maximum value at all. Of course, if the state space S is required to be finite,
then any irreducible chain will eventually find the optimal value. However, the time
to find it could be extremely large. Indeed, the Appendix also shows that if Example 2
is instead truncated at a large value 4L , then each attempt from 4L to reach state 3
before returning to 4L would have probability less than (8/9)L−1 of success. Hence,
the expected time to ever reach the state 3 would be exponentially large as a function
of L , and the chain would still spend nearly all of its time very near to the state 4L , so
its samples and sample mean and sample mode would all be extremely far from the
true optimal state 3.

3 The jump chain

Due to the problemswith theUniformSelection algorithm identified above, we instead
turn attention to a more promising avenue, the Jump Chain. Our definitions are as
follows.

1 Performed using the C program available at http://probability.ca/rejfree.c

123

http://probability.ca/rejfree.c

2794 J. S. Rosenthal et al.

0 5000 10000 15000 20000

0
20

00
40

00
60

00
80

00
10

00
0

n

X
n

Fig. 7 Output from the Uniform Selection chain for Example 2

Let {Xn} be an irreducible Markov chain on a state space S (the “original chain”).
For ease of exposition we initially assume that S is finite or countable, though we later
(Theorem 13) extend this to generalMarkov chains with densities. To avoid trivialities,
we assume throughout that |S| > 1.

Given a run {Xn} of the Markov chain, we define the Jump Chain {Jk} to be the
same chain except omitting any immediately repeated states, and theMultiplicity List
{Mk} to count the number of times the original chain remains at the same state. For
example, if the original chain {Xn} began

{Xn} = (a, b, b, b, a, a, c, c, c, c, d, d, a, . . .) ,

then the jump chain {Jk} would begin

{Jk} = (a, b, a, c, d, a, . . .) ,

and the corresponding multiplicity list {Mk} would begin

{Mk} = (1, 3, 2, 4, 2, . . .) .

The concept of jump chains arises frequently for Markov processes, especially for
continuous-time processes where they are often defined in terms of infinitesimal gen-
erators; see e.g. Section 4.4 of Durrett (1999) or Proposition 4.4.20 of Rosenthal
(2019). Here we develop the essential properties that we will use below. Most of
these properties are already known in the context of (reversible) Metropolis-Hastings
algorithms; see Remark 6 below.

123

Jump Markov chains and rejection-free Metropolis algorithms 2795

To continue, let

P(y|x) = P[Xn+1 = y | Xn = x] , x, y ∈ S

be the transition probabilities for the original chain {Xn}. And, let

α(x) = P[Xn+1
= x | Xn = x] =
∑
y
=x

P(y|x) = 1 − P(x |x) (1)

be the “escape” probability that the original chain will move away from x on the next
step. Note that since the chain is irreducible and |S| > 1, we must have α(x) > 0 for
all x ∈ S. We then verify the following properties of the jump chain.

Proposition 2 The jump chain {Jk} is itself a Markov chain, with transition probabil-
ities P̂(y|x) specified by P̂(x |x) = 0, and for y
= x,

P̂(y|x) := P[Jk+1 = y | Jk = x] = P(y|x)∑
z
=x P(z|x) = P(y|x)

α(x)
. (2)

Proof It follows from the definition of {Jk} that P̂(x |x) = 0. For x, y ∈ S with y
= x ,
we compute that

P̂(y|x) = P[Jk+1 = y
∣∣ Jk = x] = P[Xn+1 = y

∣∣ Xn = x, Xn+1
= Xn]

= P[Xn+1 = y, Xn+1
= Xn
∣∣ Xn = x]

P[Xn+1
= Xn
∣∣ Xn = x] = P(y|x)∑

z
=x P(z|x) ,

as claimed. ��
Proposition 3 The conditional distribution of Mk given Jk is equal to the distribution
of 1+G where G is a geometric random variable with success probability p = α(Jk),
i.e.

P[Mk = m
∣∣ Jk] = (1 − p)m−1 p = (1 − α(Jk))

m−1α(Jk) , m = 1, 2, . . . , (3)

and furthermore E[Mk | Jk] = 1/p = 1/α(Jk).

Proof If the original chain is at state x , then it has probability p = α(x) of leaving x
on the next step, or probability 1−α(x) of remaining at x . Hence, the probability that
it will remain at x for m steps total (i.e., m − 1 additional steps), and then leave at the
next step, is equal to (1 − p)m−1 p, as claimed. ��
Proposition 4 If the original chain P is irreducible, then so is the jump chain P̂.

Proof Let x, y ∈ S. Since P is irreducible, there is a path x = x0, x1, x2, . . . , xm = y
with P(xi+1|xi) > 0 for all i . Without loss of generality, we can assume the {xi } are
all distinct. But if P(xi+1|xi) > 0, then (2) implies that also P̂(xi+1|xi) > 0. Hence,
P̂ is also irreducible. ��

123

2796 J. S. Rosenthal et al.

Proposition 5 If the original chain P has stationary distribution π , then the jump
chain P̂ has stationary distribution π̂ given by π̂(x) = c α(x) π(x) where c =(∑

y α(y) π(y)
)−1

.

Proof Recall that on a discrete space, π is stationary for P if and only if∑
x π(x) P(y|x) = π(y) for all y ∈ S. In that case, we compute that

∑
x

π̂(x) P̂(y|x) =
∑
x

(c α(x) π(x))
([P(y|x)/α(x)] 1y
=x

)

= c
∑
x
=y

π(x) P(y|x) = c

(∑
x

π(x) P(y|x)
)

− c π(y) P(y|y)

= c π(y) − c π(y) P(y|y) = c π(y)[1 − P(y|y)] = c π(y) α(y) = π̂(y) ,

so that π̂ is stationary for P̂ , as claimed. ��
Remark 6 Most of the results presented in this section are already known in the
Metropolis-Hastings (reversible) context: the geometric distribution of the holding
times is noted in Lemma 1(3) of Douc and Robert (2011) and Proposition 1(a) of
Iliopoulos andMalefaki (2013); themodified transition probabilities of the jump chain
are stated in Proposition 1(b) of Iliopoulos and Malefaki (2013); and the relation-
ship between the stationary distributions of the original and jump chains is used in
Lemma 1(4) of Douc and Robert (2011), Proposition 1(c) of Iliopoulos and Malefaki
(2013) (see also Proposition 2.1 ofMalefaki and Iliopoulos 2008), Lemma 1 of Doucet
et al. (2015), and Section 2 of Deligiannidis and Lee (2018).

Remark 7 It is common that simple modifications of reversible chains lead to simple
modifications of their stationary distributions. For example, if a reversible chain is
restricted to a subset of the state space (so any moves out of the subset are rejected
with the chain stayingwhere it is), then its stationary distribution is equal to the original
stationary distribution conditional on being in that subset (since the detailed balance
equation still holds on the subset). However, that property does not hold without
reversibility. For a simple counter-example, let S = {1, 2, 3}, with P(2|1) = P(3|2) =
P(1|3) = 3/4, and P(3|1) = P(1|2) = P(2|3) = 1/4. Then if C = {1, 2}, then
the stationary distribution of the original chain is (1/3, 1/3, 1/3), but the stationary
distribution of the chain restricted to C is (1/4, 3/4). We were thus surprised that
Proposition 5 holds even for non-reversible chains.

4 Using the jump chain for estimation

The Jump Chain can be used for estimation, as we now discuss. This approach has
also been taken by others; see Remarks 9 and 14 below.

Theorem 8 Given an irreducible Markov chain {Xn} with transition probabilities
P(y|x) and stationary distribution π on a state space S, and a function h : S → R,

123

Jump Markov chains and rejection-free Metropolis algorithms 2797

suppose we simulate the jump chain {Jk} with the transition probabilities (2), and
then simulate the multiplicities list {Mk} from the conditional probabilities (3) where
p = α(Jk) with α as in (1), and set

ēL =
∑L

k=1 Mk h(Jk)∑L
k=1 Mk

. (4)

Then ēL is a consistent estimator of the expected value Eπ (h), i.e. limL→∞ ēL =
Eπ (h) w.p. 1.

Proof Recall (e.g. Meyn and Tweedie 1993) that the usual estimator êK =
1
K

∑K
n=1 h(Xn) is consistent, i.e. limK→∞ êK = Eπ (h) w.p. 1. Then, it is seen that

ēL =
∑L

k=1 Mk h(Jk)∑L
k=1 Mk

= ê∑L
k=1 Mk

= êK (L)

where K (L) = ∑L
k=1 Mk . Since each Mk ≥ 1, limL→∞ K (L) = ∞, so

limL→∞ ēL = limL→∞ êK (L) = limK→∞ êK = Eπ (h) w.p. 1, as claimed. ��
Remark 9 The consistency of the estimate (4), and similarly those of Theorems 12
and 13 below, is already known in the Metropolis-Hastings (reversible) context; see
equation (3) of Malefaki and Iliopoulos (2008), Section 2 of Douc and Robert (2011),
and equation (2) of Iliopoulos and Malefaki (2013).

On the other hand, combining the Markov chain Law of Large Numbers with
Propositions 4 and 5 immediately gives:

Proposition 10 Under the above assumptions, if we simulate the jump chain {Jk} with
the transition probabilities P̂, then for any function g : S → R with π̂ |g| < ∞, we
have

lim
L→∞

1

L

L∑
k=1

g(Jk) = π̂(g) :=
∑
x∈S

g(x) π̂(x) = c
∑
x∈S

g(x) α(x) π(x) w.p. 1.

Corollary 11 Under the above assumptions, if we simulate the jump chain {Jk} with
the transition probabilities P̂, then for any function h : S → R with π |h| < ∞, we
have

lim
L→∞

1

c L

L∑
k=1

[h(Jk)/α(Jk)] = π(h) :=
∑
x∈S

h(x) π(x) , w.p. 1.

Proof Let g(x) = h(x)/c α(x). Then since π |h| < ∞, we have

π̂ |g| =
∑
x

|g(x)| π̂ (x) =
∑
x

[|h(x)|/c α(x)] c α(x) π(x) =
∑
x

|h(x)| π(x) = π |h| < ∞ .

123

2798 J. S. Rosenthal et al.

So, the result follows upon plugging this g into Proposition 10. ��
We then have:

Theorem 12 Under the above assumptions, if we simulate the jump chain {Jk} with
the transition probabilities P̂, then for any function h : S → R with π |h| < ∞, we
have

lim
L→∞

∑L
k=1[h(Jk)/α(Jk)]∑L

k=1[1/α(Jk)]
= π(h) , w.p. 1. (5)

Proof Setting h ≡ 1 in Corollary 11 gives that w.p. 1, limL→∞ 1
c L

∑L
k=1[1/α(Jk)] =

1. We then compute that

lim
L→∞

∑L
k=1[h(Jk)/α(Jk)]∑L

k=1[1/α(Jk)]
= lim

L→∞

1
cL

∑L
k=1[h(Jk)/α(Jk)]

1
cL

∑L
k=1[1/α(Jk)]

=
∑

x∈S h(x) π(x)

1
= π(h) ,

as claimed. ��
Comparing Theorems 8 and 12, we see that they coincide except that each multi-

plicity random variable Mk has been replaced by its mean 1/α(Jk), cf. Proposition 3.
Finally, we note that although our computer hardware does not allow us to exploit it,

most of the above carries over toMarkov chains with densities on general (continuous)
state spaces, as follows. (The proofs are very similar to the discrete case, and are thus
omitted.)

Theorem 13 Let X be a general state space, and μ an atomless σ -finite reference
measure onX . Suppose aMarkov chain onX has transition probabilities P(x, dy) =
r(x) δx (dy)+ρ(x, y) μ(dy) for some r : X → [0, 1] and ρ : X ×X → [0,∞) with
r(x) + ∫

ρ(x, y) μ(dy) = 1 for each x ∈ X , where δx is a point-mass at x. Again let
P̂ be the transitions for the corresponding jump chain {Jk} with multiplicities {Mk}.
Then:

(i) P̂(x, {x}) = 0, and for x
= y, P̂(x, dy) = ρ(x,y)∫
ρ(x,z) μ(dz)

μ(dy).

(ii) The conditional distribution of Mk given Jk is equal to the distribution of 1+G
where G is a geometric random variable with success probability p = α(Jk)
where α(x) = P[Xn+1
= x | Xn = x] = ∫

ρ(x, z) μ(dz) = 1 − r(x) =
1 − P(x |x).

(iii) If the original chain isφ-irreducible (see e.g.Meyn and Tweedie (1993)) for some
positive σ -finite measure φ on X , then the jump chain is also φ-irreducible for
the same φ.

(iv) If the original chain has stationary distribution π(x) μ(dx), then the jump chain
has stationary distribution given by π̂(x) = c α(x) π(x) μ(dx) where c−1 =∫

α(y) π(y) μ(dy).
(v) If h : X → R has finite expectation, then with probability 1,

lim
L→∞

∑L
k=1 Mk h(Jk)∑L

k=1 Mk
= lim

L→∞

∑L
k=1[h(Jk)/α(Jk)]∑L

k=1[1/α(Jk)]
= π(h) :=

∫
h(x) π(x) μ(dx) .

123

Jump Markov chains and rejection-free Metropolis algorithms 2799

4.1 Application to theMetropolis algorithm

Suppose now that the original chain {Xn} is a Metropolis algorithm, with proposal
probabilities Q(y|x) which are symmetric (i.e. Q(y|x) = Q(x |y)). Then for x
= y,

P(y|x) = Q(y|x) min
(
1, π(y)

π(x)

)
. Hence, by (2), the jump chain transition probabil-

ities have P̂(x |x) = 0 and for x
= y are given by

P̂(y|x) := P[J1 = y | J0 = x] =
Q(y|x) min

(
1, π(y)

π(x)

)

∑
z
=x Q(z|x) min

(
1, π(z)

π(x)

) . (6)

Also, here

α(x) =
∑
y
=x

P(y|x) =
∑
y
=x

Q(y|x) min
(
1,

π(y)

π(x)

)
. (7)

A special case is where the proposal probabilities Q(x, ·) are uniform over all
“neighbours” of x , where each state has the same number N of neighbours.We assume
that x is not a neighbour of itself, and that x is a neighbour of y if and only if y is a

neighbour of x . Then for x
= y, P(y|x) = 1
N min

(
1, π(y)

π(x)

)
. And, by (2), the jump

chain transition probabilities have P̂(x |x) = 0 and for x
= y are given by

P̂(y|x) =
min

(
1, π(y)

π(x)

)

∑
z∼x min

(
1, π(z)

π(x)

) (8)

where the sum is over all neighbours z of x . Also, here

α(x) = 1

N

∑
y
=x

min
(
1,

π(y)

π(x)

)
. (9)

The use of the estimators (4) and (5) in the context of uniformMetropolis algorithms
can be carried out very efficiently using special parallelised computer hardware (see
e.g. Sect. 7 below), and was our original motivation for this investigation.

Remark 14 The “n-fold way” of Bortz et al. (1975) considers the Ising model, and
selects the next site to flip proportional to its probability of flipping, by first classifying
all sites in terms of their spin and neighbour counts. This creates a rejection-free
Metropolis-Hastings algorithm in the same spirit as our approach, though specific to
the Ising model. Later authors parallelised their algorithm, still for the Ising model;
see e.g. Lubachevsky (1988) and Kornissa et al. (1999).

123

2800 J. S. Rosenthal et al.

5 Alternating chains

Sometimes we have two or more different Markov chains and we wish to alternate
between them in some pattern. And, we might wish to use rejection-free sampling for
some or all of the individual chains. However, if this is done naively, it can lead to
bias:

Example 3 Let S = {1, 2, 3, 4}, and π = (1 − ε, 3ε, 1 − ε, 1 − ε)/3 for some small
positive number ε (e.g. ε = 0.001). Let Q1(x, x + 1) = Q1(x, x − 1) = 1/2 and
Q2(x, x + 1) = Q2(x, x + 2) = Q2(x, x − 1) = Q2(x, x − 2) = 1/4 be two
different proposal kernels, and let P1 and P2 be usual Metropolis algorithms for π

with proposals Q1 and Q2 respectively. Then, each of P1 and P2 will converge to π ,
as will the algorithm of alternating between P1 and P2 any fixed number of times.
However, if we instead alternate between doing one jump step of P1 and then one
jump step of P2, then this combined chain will not converge to the correct distribution.
Indeed, the corresponding escape probabilities α1(x) and α2(x) are all reasonably
large (at least 1/4) except for α1(1) = ε/2 which is extremely small. This means
that when our algorithm uses P1 from state 1 then it will have an extremely large
multiplicity Mk which will lead to extremely large weight of the state 1. Indeed, if we
use the alternating jump chains algorithm, then the estimators ēL as in (4) will have
the property that as ε ↘ 0, their limiting value converges to h(1) instead of π(h), i.e.

lim
ε↘0

lim
L→∞ ēL = h(1) .

Hence, convergence to π fails in this case. ��

However, this convergence problem can be fixed if we control the number of effec-
tive repetitions of each kernel. Specifically, suppose we choose in advance some
number L0 of effective repetitions we wish to perform for the kernel P1 before switch-
ing to the kernel P2. Then we can do this in a rejection-free manner as follows:

1. Set the number of remaining repetitions, L , equal to some fixed initial value L0.
2. Find the next jump chain value Jk andmultiplicityMk corresponding to theMarkov

chain P1, as above.
3. If Mk ≥ L , then replace Mk by L , and keep Jk as it is, and include that Jk and Mk

in the estimate. Then, return to step 1 with the next kernel P2.
4. Otherwise, if Mk < L , then keep Mk and Jk as they are, and count them in the

estimate, and then replace L by L − Mk and return to step 2 with the same kernel
P1.

This modified algorithm is equivalent to applying the original (non-rejection-free)
kernel P1 a total of L0 times before switching to the next kernel P2. As such, it has no
bias, and is consistent and will converge to the correct distribution without any errors
as in the counter-example above.

123

Jump Markov chains and rejection-free Metropolis algorithms 2801

6 Application to parallel tempering

Parallel tempering (or, replica exchange) Swendsen and Wang (1986); Geyer (1991)
proceeds by considering different versions of the target distribution π powered by
different inverse-temperatures β, of the form π(β)(x) ∝ (

π(x)
)β . It runs separate

MCMC algorithms on each target π(β), for some fixed number of iterations, and then
proposes to “swap” pairs of values X (β1) ↔ X (β2). This swap proposal is accepted
with the usual Metropolis algorithm probability

min

[
1,

π(β1)(X (β2)) π(β2)(X (β1))

π(β1)(X (β1)) π(β2)(X (β2))

]
(10)

which preserves the product target measure
∏

β π(β).
But suppose we instead want to run parallel tempering using jump chains, i.e.

using a rejection-free algorithm within each temperature. If we run a fixed number of
rejection-free moves of each within-temperature chain, followed by one “usual” swap
move, then this can lead to bias, as the following example shows.

Example 4 Let S = {1, 2, 3}, withπ(1) = π(3) = 1/4 andπ(2) = 1/2. Suppose there
are just two inverse-temperature values, β0 = 1 and β1 = 5. Suppose each within-
temperature chain proceeds as aMetropolis algorithm,with proposal distribution given
by Q(y|x) = 1/2whenever y
= x . (That is, we can regard the three states of S as being
in a circle, and the chain proposes to move one step clockwise or counter-clockwise
with probability 1/2 each, and then accepts or rejects this move according to the
usual Metropolis procedure.) If we run a usual parallel tempering algorithm, then the
within-temperature moves will converge to the corresponding stationary distributions
π(0) = π = (1/4, 1/2, 1/4) and π(5) = (1/34, 32/34, 1/34) respectively. Then,
given current chain values X (0) and X (5), if we attempt a usual swap move, it will be
accepted with probability

min

[
1,

π(0)(X (5)) π(5)(X (0))

π(0)(X (0)) π(5)(X (5))

]
. (11)

These steps will all preserve the product stationary distribution π(0) × π(5), as they
should. However, if we instead run a rejection-free within-temperature chain, then
convergence fails. Indeed, from each state the jump chain is equally likely to move to
either of the other two states, so each jump chain will converge to the uniform distri-
bution on S. The acceptance probability (11) will then lead to incorrect distributional
convergence, e.g. if X (0) = 2 and X (5) = 3, then a proposal to swap X (0) and X (5)

will always be accepted, leading to an excessively large probability that X (0) = 3.
Indeed, in simulations2 the fraction of time that X (0) = 3 right after a swap proposal
is about 44%, much larger than the 1/3 probability it should be. ��
2 Performed using the R program available at: http://probability.ca/rejectionfreesim.

123

http://probability.ca/rejectionfreesim

2802 J. S. Rosenthal et al.

To get rejection-free parallel tempering to converge correctly, we recall fromPropo-
sition 5 that the rejection-free chains actually converge to the modified stationary
distributions π̂ , not π . We should thus modify the acceptance probability (10) to:

min

[
1,

π̂ (β1)(X (β2)) π̂ (β2)(X (β1))

π̂ (β1)(X (β1)) π̂ (β2)(X (β2))

]

= min

[
1,

α(β1)(X (β2)) π(β1)(X (β2)) α(β2)(X (β1)) π(β2)(X (β1))

α(β1)(X (β1)) π(β1)(X (β1)) α(β2)(X (β2)) π(β2)(X (β2))

]
. (12)

Such swaps will preserve the product modified stationary distribution
∏

β π̂ (β), rather

than trying to preserve the unmodified stationary distribution
∏

β π(β). (If necessary,
the escape probabilities α(x) can be estimated from a preliminary run.) The rejection-
free parallel tempering algorithm will thus converge to

∏
β π̂ (β), thus still allowing

for valid inference as in Theorems 8 and 12.
Example 4 (continued): In this example,α(0)(1) = α(0)(3) = α(5)(1) = α(5)(3) = 1,
α(0)(2) = 1/2, and α(5)(2) = 1/32. So, if X (0) = 2 and X (5) = 3, then according
to (12), a proposal to swap X (0) and X (5) will be accepted with probability

min

[
1,

α(0)(X (5)) π(0)(X (5)) α(5)(X (0)) π(5)(X (0))

α(0)(X (0)) π(0)(X (0)) α(5)(X (5)) π(5)(X (5))

]

= min

[
1,

(1)(1/4)(1/32)(1/2)

(1/2)(1/2)(1)(1/34)

]
= 34/64 = 17/32 ,

and such swaps will instead preserve the product stationary distribution π̂ (0) × π̂ (5).
Indeed, in simulations3 the fraction of time that X (0) = 3 right after a swap proposal
with this modified acceptance probability becomes about 1/3, as it should be. ��

7 Numerical examples

In this section, we introduce applications and simulations to illustrate the advantage
of Rejection-Free algorithm. We compare the efficiency of the Rejection-Free and
standard Metropolis algorithms in three different examples. The first example is a
Bayesian inference model on a real data set taken from the Education Longitudinal
Study of National Center (2002). The second example involves sampling from a two-
dimensional ferromagnetic 4×4 Ising model. The third example is a pseudo-marginal
Andrieu and Roberts (2009) version of the Ising model. All three simulations show
that the introduction of the Rejection-Free method leads to significant speedup. This
provides concrete numerical evidence for the efficiency of using the rejection-free
approach to improve the convergence to stationarity of the algorithms.

3 Performed using the R program available at: http://probability.ca/rejectionfreemod.

123

http://probability.ca/rejectionfreemod

Jump Markov chains and rejection-free Metropolis algorithms 2803

Table 1 Median effective sample size from 100 runs of each of themetropolis and rejection-free algorithms,
for the Bayesian real data example of Sect. 7.1

ESS per iteration ESS per CPU second

Metropolis 0.0073 47

Rejection-Free 0.5503 3012

Ratio 75.4 64.1

7.1 A Bayesian inference problemwith real data

For our first example, we consider the Education Longitudinal Study data from the
National Center (2002), a real data set consisting of final course grades of over 9000
students. We take a random subset of 200 of these 9000 students, and denote their
scores as x1, x2, . . . , x200. (Note that all scores in this data set are integers between 0
and 100.)

Our parameter of interest θ is the true average value of the final grades for these 200
students, rounded to 1 decimal place (so θ ∈ {0.1, 0.2, 0.3, . . . , 99.7, 99.8, 99.9} is
still discrete, and can be studied using specialised computer hardware). The likelihood
function for this model is the binomial distribution

L(x |θ) =
(
100

x

)
θ x (1 − θ)100−x . (13)

For our prior distribution, we take

θ ∼ Uniform{0.1, 0.2, 0.3, . . . , 99.7, 99.8, 99.9} . (14)

The posterior distribution π(θ) is then proportional to the prior probability func-
tion (14) times the likelihood function (13).

We ran an Independence Sampler for this posterior distribution, with fixed proposal
distribution equal to the prior (14), either with or without the Rejection-Free modi-
fication. For each of these two algorithms, we calculated the effective sample size,
defined as

ESS(θ) = N

1 + 2
∑∞

k=1 ρk(θ)
,

where N is the number of posterior samples, and ρk(θ) represents autocorrelation at
lag k for the posterior samples of θ . (For a chain of finite length, the sum

∑∞
k=1 ρk(θ)

cannot be taken over all k, so instead we just sum until the values of ρk(θ) become
negligible.) For fair comparison, we consider both the ESS per iteration, and the ESS
per second of CPU time.

Table 1 presents the median ESS per iteration, and median ESS per second, from
100 runs of 100,000 iterations each, for each of the two algorithms. We see from
Table 1 that Rejection-Free outperforms the Metropolis algorithm by a factor of about

123

2804 J. S. Rosenthal et al.

Table 2 Median effective
sample size from 100 runs of
each of the metropolis and
rejection-free algorithms, for the
expanded Bayesian real data
example of Sect. 7.2

ESS per iteration ESS per second

Metropolis 0.0102 61

Rejection-free 0.4260 2893

Ratio 41.76 47.43

75 or 64, in terms of ESS per iteration or ESS per second. This clearly illustrates the
efficiency of the Rejection-Free algorithm.

7.2 An expanded real data example

In the previous example,we consider a randomsubset of 200 students from theNational
Center (2002) data set. We now consider data from all 9000 students simultaneously.

In this case, with so many data, the posterior will tend to be quite con-
centrated, in this case around the value 51.1. Hence, the old prior is not suit-
able anymore. Instead, we need to keep accuracy to at least 2 decimals to
get a well-distributed posterior. Therefore, we instead choose the prior θ ∼
Uniform{0.01, 0.02, 0.03, . . . , 99.97, 99.98, 99.99}, to be accurate to two decimal
places.

We ran each of the two algorithms for 100 runs of 100,000 iterations each, using
all the data from the dataset. Table 4 presents the resulting median ESS per iteration,
and median ESS per second.

We see from Table 4 that Rejection-Free again outperforms the Metropolis algo-
rithm, this time by factors of over 40. This again illustrates the efficiency of the
Rejection-Free algorithm, even for very large real datasets.

7.3 Simulations of an Isingmodel

We next present a simulation study of a ferromagnetic Ising model on a two-
dimensional 4 × 4 square latice. The energy function for this model is given by

E(S) = −
∑
i< j

Ji j si s j ,

where each spin si , s j ∈ {−1, 1}, and Ji j represents the interaction between the i th

and j th spins. To make only the neighbouring spins in the lattice interact with each
other, we take Ji j = 1 for all neighbours i and j , and Ji j = 0 otherwise. The Ising
model then has probability distribution propositional to the exponential of the energy
function:

�(S) ∝ exp[−E(S)] .

We investigate the efficiency of the samples produced in four different scenarios:
Metropolis algorithm and Rejection-Free, both with and without Parallel Tempering.

123

Jump Markov chains and rejection-free Metropolis algorithms 2805

For the Parallel Tempering versions, we set

�T (S) ∝ exp[−E(S) / T] .

Here T = 1 is the temperature of interest (which we want to sample from). We take
T = 2 as the highest temperature, since when T = 2 the probability distribution
for magnetization is quite flat (with highest probability P[M(S) = 14] = 0.083, and
lowest probability P[M(S) = 2] = 0.037). Including the one additional temperature
T = √

2 gives three temperatures 1,
√
2, 2 in geometric progression, with average

swap acceptance rate 31.6% which is already higher than the 23.4% recommended in
Roberts and Rosenthal (2014), indicating that three temperatures is enough.

We study convergence of the magnetization value, where the magnetization of a
given state S of the Ising model is defined as:

M(S) =
∑
i

si .

For our 4 × 4 Ising model,

M(S) ∈ M = {−16,−14,−12, . . . ,−2, 0, 2, . . . , 12, 14, 16}.

We measure the distance to stationarity by the total variation distance between the
sampled and the actual magnetization distributions after n iterations, defined as:

TVD(n) = 1

2

∑
m∈M

∣∣∣P[M(Xn) = m] − �{S : M(S) = m}
∣∣∣ ,

where M(Xn) is the magnetization of the chain at iteration n, and �{S : M(S) = m}
represents the stationary probability of magnetization value m. Thus, convergence to
stationarity is described by how quickly TVD(n) decreases to 0.

Figure 8 lists the average total variation distance TVD(n) for each version, as a
function of the number of iterations n, based on 100 runs of each of the four scenarios,
of 106 iterations each. It illustrates that, with or without Parallel Tempering, the use of
Rejection-Free provides significant speedup, and TVD decreases much more rapidly
with the Rejection-Free method than without it. This provides concrete numerical
evidence for the efficiency of using Rejection-Free to improve the convergence to
stationarity of the algorithm.

We next consider the issue of computational cost. The Rejection-Free method
requires computing probabilities for all neighbors of the current state. However, with
specialised computer hardware, Rejection-Free can be very efficient since the calcu-
lation of the probabilities for all neighbours and selection of the next state can both be
done in parallel. The computational cost of each iteration of Rejection-Free is therefore
equal to the maximum cost used on each neighbor. Similarly, for Parallel Tempering,
we can calculate all of the different temperature chains in parallel. The average CPU
time per iteration for each of the four different scenarios are presented in Table 3. It
illustrates that the computational cost of Rejection-Free without Parallel Tempering

123

2806 J. S. Rosenthal et al.

Fig. 8 Average total variation distance TVD(n) between sampled and actual distributions as a function
of the number of iterations, for the Ising Model example of Sect. 7.3, for four scenarios: Metropolis and
Rejection-Free, both without (left) and with (right) Parallel Tempering

Table 3 Average CPU time per iteration for the IsingModel example of Sect. 7.3, for each of four scenarios:

Algorithm Average CPU time (nanoseconds)

Metropolis w/o PT 420

Rejection-Free w/o PT 407

Metropolis w/ PT 463

Rejection-Free w/ PT 611

Metropolis and Rejection-Free, both with and without Parallel Tempering

was comparable to that of the usual Metropolis algorithm, though Rejection-Free with
Parallel Tempering does require up to 50% more time than the other three scenarios.

Figure 9 shows the average total variation distance as a function of the total CPU
time used for each algorithm. Figure 9 is quite similar to Fig. 8, and gives the same
overall conclusion: with or without Parallel Tempering, the use of Rejection-Free
provides significant speedup, even when computational cost is taken into account.

As a final check, we also calculated the effective sample size, similar to the first
example. First, we generated 100 MCMC chains of 100,000 iterations each, from all
four algorithms. Then, we calculated the effective sample size for each chain, and
normalized the results by either the number of iterations or the total CPU time for
each algorithm. Table 4 shows the median of ESS per iteration and ESS per CPU
second. It again illustrates that Rejection-Free can produce great speedups, increasing
the ESS per CPU second by a factor of over 50 without Parallel Tempering, or a factor
of 2 with Parallel Tempering.

123

Jump Markov chains and rejection-free Metropolis algorithms 2807

Fig. 9 Average total variation distance TVD(n) between sampled and actual distributions as a function of
CPU time cost, for the Ising Model example of Sect. 7.3, for four scenarios: Metropolis versus Rejection-
Free both without (left) and with (right) Parallel Tempering

Table 4 Median of normalized effective sample sizes for the Ising model example of Sect. 7.3, for four
scenarios: Metropolis and Rejection-Free, both with and without Parallel Tempering

ESS per iteration ESS per CPU second

Metropolis w/0 PT 0.0003 77.76

Rejection-Free w/o PT 0.0016 4227

Metropolis w/ PT 0.0057 11,830

Rejection-Free w/ PT 0.0138 23,459

7.4 A pseudo-marginal MCMC example

If the target density itself is not available analytically, but an unbiased estimate exists,
then pseudo-marginal MCMCAndrieu and Roberts (2009) can still be used to sample
from the correct target distribution. We next apply the Rejection-Free method to a
pseudo-marginal algorithm to show that Rejection-Free can provide speedups in that
case, too.

In the previous example of the 4×4 Ising model, the target probability distributions
were defined as

�(S) ∝ exp

{
− E(S)

T

}
.

123

2808 J. S. Rosenthal et al.

Fig. 10 Average total variation distance TVD(n) between sampled and actual distributions as a function of
number of iterations n, for the Pseudo-Marginal example of Sect. 7.4, with noise distribution Gamma(10,
10), for four different scenarios: Metropolis and Rejection-Free, both without Parallel Tempering (left) and
with Parallel Tempering (right)

We now pretend that this target density is not available, and we only have access to an
unbiased estimator given by

�0(S) ∝ �(S) × A = exp

{
E(S)

T

}
× A ,

where A ∼ Gamma(α = 10, β = 10) is a random variable (which is sampled
independently every time as we try to compute the target distribution). Note that
E(A) = 10/10 = 1, so E[�0(S)] = �(S), and the estimator is unbiased (though A
has variance 10/102 = 1/10 > 0).

Using this unbiased estimate of the target distribution as for pseudo-marginal
MCMC, we again investigated the convergence of samples produced by the same
four scenarios: Metropolis and Rejection-Free, both with and without Parallel Tem-
pering. Figure 10 shows the average total variation distance TVD(n) between the
sampled and the actual magnetization distributions, for 100 chains, as a function of
the iteration n, keeping all the other settings the same as before. This figure is quite
similar to Fig. 8, again showing that with or without Parallel Tempering, the use of
Rejection-Free provides significant speedup, even in the pseudo-marginal case.

8 Summary

This paper has considered the use of parallelised computer hardware to run rejection-
free versions of the Metropolis algorithm. We showed that the Uniform Selection

123

Jump Markov chains and rejection-free Metropolis algorithms 2809

algorithm might fail to converge to the correct distribution or even visit the maximal
value. However, the Jump Chain with appropriate weightings can provide consistent
estimates of expected values in an efficient rejection-free manner. Care must be taken
when alternating between multiple rejection-free chains, or when using rejection-free
chains for parallel tempering, but appropriate adjustments allow for valid samplers
in those cases as well. Simulations of our methods on several examples illustrate the
significant speedups that result from using the Rejection-Free method to obtain more
efficient samples.

Acknowledgements This work was supported by research grants from Fujitsu Laboratories Ltd. We thank
the editor and referees for very helpful comments which have greatly improved the manuscript.

9 Appendix: Proof of Proposition 1

Lemma 15 For the Uniform Selection chain of Fig. 6, let s(x) = P(hit 4 before
0 | X0 = x). Then s(0) = 0, s(1) = 3/7, s(2) = 4/7, s(3) = 13/21, and s(4) = 1.

Proof Clearly s(0) = 0 and s(4) = 1. Also, by conditioning on the first step, for
1 ≤ x ≤ 3 we have s(x) = px,x−1 s(x − 1) + px,x+1 s(x + 1). In particular, s(1) =
(1/4)s(0) + (3/4)s(2) = (3/4)s(2), and s(2) = (1/4)s(1) + (3/4)s(3), and s(3) =
(8/9)s(2) + (1/9)s(4) = (8/9)s(2) + (1/9). We solve these equations using algebra.
Substituting the first equation into the second, s(2) = (1/4)(3/4)s(2) + (3/4)s(3),
so (13/16)s(2) = (3/4)s(3), so s(3) = (13/16)(4/3)s(2) = (13/12)s(2). Then
the third equation gives (13/12)s(2) = (8/9)s(2) + (1/9), so (7/36)s(2) = (1/9),
so s(2) = (1/9)(36/7) = 4/7. Then s(1) = (3/4)s(2) = (3/4)(4/7) = 3/7, and
s(3) = (8/9)s(2) + (1/9) = (8/9)(4/7) + (1/9) = 13/21, as claimed. ��
Lemma 16 Suppose the Uniform Selection chain for Example 2 begins at state x = 4a
for some positive integer a. Let C be the event that the chain hits 4(a+1) before hitting
4(a − 1). Then q := P(C) = 9/17 > 1/2.

Proof By conditioning on the first step, we have that

q = P(C | X0 = 4a)

= P(X1 = 4a + 1) P(C | X0 = 4a + 1) + P(X1 = 4a − 1) P(C | X0 = 4a − 1)

= (1/2) P(C | X0 = 4a + 1) + (1/2) P(C | X0 = 4a − 1) .

But from 4a + 1, by Lemma 15, we either reach 4a + 4 before returning to 4a (and
“win”) with probability 3/7, or we first return to 4a (and “start over”) with probability
4/7. Similarly, from 4a − 1, we either return to 4a (and “start over”) with probability
13/21, or we reach 4a − 4 before returning to 4a (and “lose”) with probability 8/21.
Hence,

q = (1/2) [(3/7) + (4/7)q] + (1/2) [(13/21)q + 0] .

That is, q = (3/14)+(2/7)q+(13/42)q = (3/14)+(25/42)q. Hence, q = (3/14)
/

(17/42) = 9/17 > 1/2. ��

123

2810 J. S. Rosenthal et al.

We then have:

Corollary 17 Suppose the Uniform Selection chain for Example 2 begins at state 4a ≥
8 for some positive integer a ≥ 2. Then the probability it will ever reach the state 4 is
(8/9)a−1 < 1.

Proof Consider a sub-chain {X̃n} of {Xn} which just records new multiples of 4. That
is, if the original chain is at the state 4b, then the new chain is at b. Then, we wait
until the original reaches either 4(b − 1) or 4(b + 1) at which point the next state of
the new chain is b− 1 or b+ 1 respectively. Then Lemma 16 says that this new chain
is performing simple random walk on the positive integers, with up-probability 9/17
and down-probability 8/17. Then it follows from the Gambler’s Ruin formula (e.g.
Rosenthal 2006, equation 7.2.7) that, starting from state a, the probability that the new
chain will ever reach the state 1 is equal to [(8/17)/(9/17)]a−1 = (8/9)a−1 < 1, as
claimed. ��

Since the chain starting at 4a for a ≥ 2 cannot reach state 3 without first reaching
state 4, Proposition 1 follows immediately from Corollary 17.

If we instead cut off the example at the state 4L , then the Gambler’s Ruin formula
(e.g.Rosenthal 2006, equation 7.2.2) says that from the state 4(L−1), the probability of
reaching the state 4 before returning to the state 4L is [(9/8)1−1] / [(9/8)L−2−1] <

(8/9)L−1 (since [A − 1] / [B − 1] < A/B whenever 1 < A < B), so the expected
number of attempts to reach state 4 from state 4L is more than (9/8)L−1.

References

Andrieu C, Roberts GO (2009) The pseudo-marginal approach for efficient Monte Carlo computations.
Ann Stat 37(2):697–725

Bortz AB, Kalos MH, Lebowitz JL (1975) A new algorithm for Monte Carlo simulation of Ising spin
systems. J Comp Phys 17:10–18

Brooks S, GelmanA, Jones GL,MengX-L (eds) (2011) Handbook ofMarkov chainMonte Carlo. Chapman
and Hall/CRC Press, Boca Raton

Deligiannidis G, Lee A (2018) Which ergodic averages have finite asymptotic variance? Ann Appl Prob
28(4):2309–2334

Douc R, Robert CP (2011) A vanilla Rao-Blackwellization of Metropolis–Hastings algorithms. Ann Stat
39:261–277

Doucet A, Pitt MK, Deligiannidis G, Kohn R (2015) Efficient implementation of Markov chain Monte
Carlo when using an unbiased likelihood estimator. Biometrika 102(2):295–313

Durrett R (1999) Essentials of Stochastic Processes. Springer, New York
National Center for Education Statistics (2002) Education Longitudinal Study of 2002. Available at: https://

nces.ed.gov/surveys/els2002/
Geyer CJ (1991) Markov chain Monte Carlo maximum likelihood. In: Computing Science and Statistics,

Proceedings of the 23rd Symposium on the Interface, American Statistical Association, New York, pp
156–163

HastingsWK(1970)MonteCarlo samplingmethods usingMarkov chains and their applications.Biometrika
57:97–109

Iliopoulos G, Malefaki S (2013) Variance reduction of estimators arising from Metropolis–Hastings algo-
rithms. Stat Comput 23:577–587

Kornissa G, Novotnya MA, Rikvoldab PA (1999) Parallelization of a dynamic Monte Carlo algorithm: a
partially rejection-free conservative approach. J Comp Phys 153(2):488–508

Lubachevsky BD (1988) Efficient parallel simulations of dynamic ising spin systems. J Comp Phys
75(1):103–122

123

https://nces.ed.gov/surveys/els2002/
https://nces.ed.gov/surveys/els2002/

Jump Markov chains and rejection-free Metropolis algorithms 2811

Malefaki S, Iliopoulos G (2008) On convergence of properly weighted samples to the target distribution. J
Stat Plan Inference 138:1210–1225

Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equations of state calculations by
fast computing machines. J Chem Phys 21:1087–1091

Meyn SP, Tweedie RL (1993)Markov chains and stochastic stability. Springer, London. Available at: http://
probability.ca/MT/

RobertsGO,GelmanA,GilksWR(1997)Weak convergence andoptimal scaling of randomwalkMetropolis
algorithms. Ann Appl Prob 7:110–120

Roberts GO, Rosenthal JS (2001) Optimal scaling for various Metropolis–Hastings algorithms. Stat Sci
16:351–367

Roberts GO, Rosenthal JS (2014) Minimising MCMC variance via diffusion limits, with an application to
simulated tempering. Ann Appl Prob 24:131–149

Rosenthal JS (2006) A first look at rigorous probability theory, 2nd edn. World Scientific Publishing,
Singapore

Rosenthal JS (2019) A first look at stochastic processes. World Scientific Publishing, Singapore
Swendsen RH, Wang JS (1986) Replica Monte Carlo simulation of spin glasses. Phys Rev Lett 57:2607–

2609

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://probability.ca/MT/
http://probability.ca/MT/

	Jump Markov chains and rejection-free Metropolis algorithms
	Abstract
	1 Introduction
	2 The Uniform Selection algorithm
	3 The jump chain
	4 Using the jump chain for estimation
	4.1 Application to the Metropolis algorithm

	5 Alternating chains
	6 Application to parallel tempering
	7 Numerical examples
	7.1 A Bayesian inference problem with real data
	7.2 An expanded real data example
	7.3 Simulations of an Ising model
	7.4 A pseudo-marginal MCMC example

	8 Summary
	Acknowledgements
	9 Appendix: Proof of Proposition 1
	References

