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Abstract

We provide conditions that guarantee for a discrete time martingale Mn, either
limn→∞Mn exists, or both lim supn→∞Mn = ∞ and lim infn→∞Mn = −∞, a.s. on
sample paths. A sufficient condition on the martingale is a uniform control on the ratio
of the L2 and L1 norms of the increments. Near-symmetry of the increments provides
an alternative condition. We also discuss a counterexample when these conditions are
violated.

1. Introduction and Main Results

Martingales are the mathematical idealization of the idea of a “fair game”. The martingale

property says that for each play of the game, the expected change in one’s fortune is zero.

However, such a local definition of fairness does not automatically lead to a globally fair

game. It is easy to construct pathological, unfair martingales Mn for which limn→∞ Mn = ∞
a.s. or for which limn→∞ Mn = −∞ a.s.

In light of such examples, it is reasonable to ask under which additional assumptions

either limn→∞ Mn exists (as a finite limit), or both lim supn→∞ Mn = ∞ and lim infn→∞ Mn =

−∞, a.s. The latter property is equivalent to the sample path hitting all half-lines (−∞, a]

and [a,∞), a ∈ R, eventually (and hence infinitely often), and so we refer to such sample

paths as half-line recurrent (HLR). We can think of this behavior as corresponding to a

general form of ruin.

By the Chung-Fuchs theorem, any nondegenerate mean 0 random walk is recurrent. (See,

for example, Section 3.2 of [1].) Consequently, almost all sample paths of such a random
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walk are HLR. It is easy to see that for continuous time martingales Mt with continuous

sample paths, each path either converges or is HLR a.s. For this, let τa denote the hitting

time of (−∞, a] and note that Mt∧τa is a martingale bounded below by a. By the martingale

convergence theorem, Mt∧τa converges a.s. as t → ∞. If the limit is Mτa , then Mt hits

(−∞, a]; otherwise, Mt converges. The argument for [a,∞) is the same. Similar reasoning

also shows that for a discrete time martingale with increments Xi that are uniformly bounded

below, almost all paths either converge or are HLR.

A simple example of a discrete time martingale where this property fails is obtained by

taking X1, X2, . . . to be independent with

P

(
Xi =

2i

2i − 1

)
=

2i − 1

2i
and P (Xi = −2i) =

1

2i
. (1.1)

Since
∑∞

i=1 P (Xi = −2i) < ∞, it follows from the Borel-Cantelli lemma that Xi > 1 for all

but finitely many i. Hence, Mn = X1 + · · ·+ Xn →∞ a.s. as n →∞.

Such counterexamples can be avoided by controlling the tails of the increments Xi. Con-

ditions for this are given by our two main results, Theorems 1.1 and 1.4. Theorem 1.1

assumes an upper bound on the conditional variances and Theorem 1.4 makes a symmetry

assumption.

Throughout the paper,

Mn = x0 + X1 + · · ·+ Xn, n = 0, 1, 2, . . . (1.2)

will be a martingale or supermartingale with respect to a filtration F0 ⊆ F1 ⊆ · · · ⊆ F of

σ-fields on a probability space (Ω,F , P ). The martingale (supermartingale) property says

that E[Xi | Fi−1] = 0 (≤ 0) a.s. for all i ≥ 1. The conditional variances will be denoted by

σ2
i = E[X2

i |Fi−1] . (1.3)

Theorem 1.1. Suppose that Mn is a martingale with increments Xn satisfying

σ2
n ≤ K

(
(E[|Xn| | Fn−1])

2 ∨ E[X2
n ; |Xn| ≤ A | Fn−1]

)
(1.4)

a.s. for all n = 1, 2, . . . and fixed A, K ∈ [1,∞). Then,

P (either Mn converges or Mn is HLR) = 1 . (1.5)

The first bound on the right side of (1.4) is the more important one and is used for the

following two corollaries. We will demonstrate Theorem 1.1 in Section 2. There, we will

show that Mn converges when
∑∞

i=1 σ2
i < ∞, and that Mn is otherwise HLR. In order to
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show that Mn is HLR, it will be enough to show τ
def
= τ0 < ∞ must hold, by translating and

reflecting Mn.

A martingale transform of a random walk (MTRW) is a martingale with Xi = θi−1Zi,

where Z1, Z2, . . . are independent and identically distributed, Fn = σ(Z1, . . . , Zn), and θi ∈
Fi. It is the discrete analogue of a stochastic integral. A special case of Theorem 1.1 is the

following result. (We denote by Z a random variable with the common distribution of Zi.)

Corollary 1.2. A MTRW with E[Z2] < ∞ satisfies (1.5).

Here, we can set K = E[Z2] /E[|Z|]2 and employ the first bound on the right side of (1.4).

In Section 4, we will give an example of a MTRW with E[|Z|p] < ∞, for given p ∈ [1, 2),

but for which (1.5) does not hold.

Another family of martingales is given by finitely inhomogeneous random walks (FIRW’s).

Let Z
(j)
i , i = 1, 2, . . . and j = 1, . . . , J denote independent mean 0 random variables with

distribution functions F (j), and set Fn = σ(Z
(j)
i , i = 1, . . . , n, j = 1, . . . , J). Also, let

θi ∈ Fi, where θi takes values 1, 2, . . . , J . Then, Mn = x0 + Z
(θ0)
1 + . . . + Z(θn−1)

n is a FIRW.

Corollary 1.3. A FIRW, with E[(Z(j))2] < ∞ for all j, satisfies (1.5).

Corollary 1.3 was shown in [2] (see also [4]). There, examples are given of FIRW’s with

E[|Z(j)|p] < ∞, for given p ∈ [1, 2), but for which (1.5) does not hold.

When (1.4) does not hold, appropriate symmetry conditions on Xi are still enough to

imply (1.5). Here, X+ = X ∨ 0 and X− = (−X) ∨ 0.

Theorem 1.4. Suppose that Mn is a supermartingale with increments Xn satisfying

E[X+
n ; X+

n > x | Fn−1] ≥ E[X−
n ; X−

n > bx | Fn−1] (1.6)

a.s. for all n = 1, 2, . . . and x ≥ x1, for fixed b and x1 > 0. Then,

P (either Mn converges or lim inf
n→∞

Mn = −∞) = 1 . (1.7)

If Mn is a martingale satisfying both (1.6) and its analogue with the roles of X+
n and X−

n

reversed, then (1.5) holds.

We will demonstrate Theorem 1.4 in Section 3. The proof is relatively simple and uses

the Skorokhod embedding.

This paper was originally motivated by a question arising from the paper [3] about

whether a MTRW, for which Zi are standard Gaussian random variables, must satisfy (1.5).

(The answer is yes, on account of both Corollary 1.2 and Theorem 1.4.)

3



2. Proof of Theorem 1.1

Before proving Theorem 1.1, we first present three lemmas. The first lemma exploits (1.4)

to obtain a lower bound on the L1 norm of a stopped martingale with bounded increments.

Recall that σ2
n is defined in (1.3).

Lemma 2.1. Let Mn = x0 + X1 + · · ·+ Xn be a martingale satisfying (1.4). Also, assume

that for some fixed A > 0, σn ≤ A always holds, and set

α = min{n : |Mn| ≥ A}. (2.1)

Then, for any stopping time γ,

E
[
|Mα∧γ|

]
≥ E

[α∧γ∑
n=1

σ2
n

]
/ 64AK2 . (2.2)

Proof. For a given n, we first consider realizations on which the first bound on the right

side of (1.4) holds. We note that the general inequality,

P (|X| ≥ c) ≥ (E[|X|]− c)2 /E[X2] for c ≤ E[|X|] ,

follows from Schwarz’s inequality E[|XY |]2 ≤ E[X2]E[Y 2] with Y = 1|X|≥c . Applying this

to X = |Xn| with c = σn/2
√

K, and using the first half of (1.4), we have

P (|Xn| ≥ σn / 2
√

K | Fn−1) ≥ 1/4K . (2.3)

Let

ϕ(x) =

{
x2 for |x| ≤ 2A
4A(|x| − 2A) + 4A2 for |x| > 2A .

Note that ϕ is convex, with ϕ′′(x) = 2 for |x| < 2A. So, for |x0| ∨ c ≤ A and |x| ≥ c, it

follows that

ϕ(x0 + x) ≥ ϕ(x0) + xϕ′(x0) + c2 .

Therefore, if X is any random variable with E[X] = 0,

E[ϕ(x0 + X)] ≥ ϕ(x0) + P (|X| ≥ c) c2 (2.4)

for |x0| ∨ c ≤ A. Applying (2.4) to x0 = Mn−1, X = Xn and c = σn/2
√

K ≤ A, we therefore

have

E[ϕ(Mn) | Fn−1] ≥ ϕ(Mn−1) + P
(
|Xn| ≥ σn/2

√
K | Fn−1

)
σ2

n/4K , (2.5)

for |Mn−1| ≤ A. It follows from (2.3) and (2.5), that for |Mn−1| ≤ A,

E[ϕ(Mn)− ϕ(Mn−1) | Fn−1] ≥ σ2
n / 16K2 . (2.6)
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Next consider realizations on which the second bound on the right side of (1.4) holds for

given n. For |x0| ≤ A,

ϕ(x0 + x) ≥
{

ϕ(x0) + xϕ′(x0) + x2 for |x| ≤ A
ϕ(x0) + xϕ′(x0) for |x| > A .

Therefore, if X is any random variable with E[X] = 0,

E[ϕ(x0 + X)] ≥ ϕ(x0) + E[X2; |X| ≤ A] .

Setting x0 = Mn−1 and X = Xn, and then applying the second half of (1.4), implies that

E[ϕ(Mn)− ϕ(Mn−1) | Fn−1] ≥ E[X2
n; |Xn| ≤ A | Fn−1] ≥ σ2

n/K .

Hence, (2.6) holds in this setting as well.

We note that ϕ(M0) ≥ 0 and {α ∧ γ < n} ∈ Fn−1. So, iterating the quantity in (2.6)

implies that

E[ϕ(Mα∧γ)] ≥ E

[α∧γ∑
n=1

σ2
n

]
/ 16K2 .

Since ϕ(x) ≤ 4A|x| for all x, (2.2) follows.

As noted in the introduction, when the increments of a martingale are bounded from

below, (1.5) always holds. The next lemma gives an upper bound on the probability of large

negative jumps, in terms of the conditional variances in (1.3).

Lemma 2.2. Let Mn = x0 + X1 + · · ·+ Xn be a martingale. For any fixed B > 0, let

β = min{n : X−
n ≥ B}. (2.7)

Then, for any stopping time γ,

P (β ≤ γ) ≤ E

[ γ∑
n=1

σ2
n

]
/B2 . (2.8)

Proof. Since {γ ≥ n} ∈ Fn−1,

P (β ≤ γ) = E

[ ∞∑
n=1

1γ≥n1β=n

]
= E

[ γ∑
n=1

E[1β=n | Fn−1]

]
.

This is

≤ E

[ γ∑
n=1

E[1X−n ≥B | Fn−1]

]
≤ E

[ γ∑
n=1

σ2
n

]
/B2 ,
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with the last inequality following from the conditional Chebyshev inequality.

In Lemma 2.3, we employ Lemmas 2.1 and 2.2 to show there is a positive probability of

hitting (−∞, 0] when
∑n

i=1 σ2
i is sufficiently large. Let ∆ denote the set on which

∑∞
i=1 σ2

i =

∞, with d0 = P (∆). We let τ denote the hitting time of (−∞, 0], and choose n0 to be the

first time at which

P

(
n0∑
i=1

σ2
i ≥ N

)
≥ 3d0/4 (2.9)

with a given N < ∞.

Lemma 2.3. Let Mn = x0 + X1 + · · · + Xn, x0 > 0, be a martingale satisfying (1.4), and

assume that d0 > 0. Then,

P (τ ≤ n0) ≥ C1d
2
0/K

4 (2.10)

for N = C2K
4x2

0/d
2
0 and appropriate constants C1 > 0 and C2.

Proof. Let ν = min{n :
∑n

i=1 σ2
i ≥ N}. We use ν to truncate Mn by setting Mn = Mn for

n < ν and

Mn = Mν−1 + Xνσ
−1
ν

(
N −

ν−1∑
i=1

σ2
i

)1/2

for n ≥ ν . (2.11)

Mn is a martingale starting at x0 whose increments satisfy (1.4). The νth increment of Mn

has been defined so that
∑ν

i=1 σ2
i = N on ν < ∞. Clearly, τ < ν exactly when τ < ν, and

τ > ν cannot occur. (The terms σ2
i and τ are the analogues of σ2

i and τ .) Moreover, since the

product of the two terms multiplying Xν in (2.11) is at most 1, τ = ν < ∞ can only occur

when τ = ν < ∞ does. So, by comparing Mn with Mn, it suffices to demonstrate (2.10)

under the additional assumption that on ν < ∞,

n∑
i=1

σ2
i = N for n ≥ ν . (2.12)

We set

µ = α ∧ β ∧ τ ∧ n0 ,

where α is given by (2.1) and β is given by (2.7); A and B are fixed and will later be chosen

appropriately. We proceed to obtain upper bounds on E[|Mµ|]. We consider two cases,

depending on whether or not

P (α ≤ n0) ≤
1

6
d0 . (2.13)
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Assume (2.13) holds. By choosing B large enough so that N/B2 ≤ 1
24

d0, it follows from

Lemma 2.2 and (2.12) that

P (β ≤ n0) ≤
1

24
d0 . (2.14)

We can assume that P (τ ≤ n0) ≤ 1
24

d0. (Otherwise, (2.10) is satisfied with C1 = 1
24

, since

K ≥ 1 is assumed.) Also, by (2.9), P (n0 < ν) ≤ 1− 3
4
d0. So,

P (µ < ν) ≤ P (α ∧ β ∧ τ ≤ n0) + P (n0 < ν) ≤ 1− 1

2
d0 . (2.15)

We will later choose A and N so that N ≤ A2. It follows from this and (2.12) that σi ≤ A

always holds, and so we may employ Lemma 2.1. Together with (2.12) and (2.15), the lemma

implies that

E[|Mµ|] ≥ E

[
ν∑

i=1

σ2
i ; µ ≥ ν

] /
64AK2 ≥ Nd0/128AK2 . (2.16)

If, on the other hand, (2.13) does not hold, then

P (α ≤ β ∧ τ ∧ n0) ≥ P (α ≤ n0)− P (β ≤ n0)− P (τ ≤ n0) ≥
1

12
d0 ,

where the last inequality follows from (2.14) and our assumption on τ . Since |Mα| ≥ A, it

follows that

E[|Mµ|] ≥
1

12
Ad0 . (2.17)

By (2.16) and (2.17),

E[|Mµ|] ≥ min

{
1

128

Nd0

AK2
,

1

12
Ad0

}

always holds. Since Mn is a martingale and µ is bounded,

E[|Mµ|] = E[M+
µ ] + E[M−

µ ] = 2 E[M−
µ ] + x0

by the optional sampling theorem. So,

E[M−
µ ] ≥ min

{
1

256

Nd0

AK2
,

1

24
Ad0

}
− 1

2
x0 . (2.18)

On the set where β = µ, we have β ≤ n0 and M−
µ ≤ X−

β , and therefore,

E[M−
µ ; β = µ] ≤

n0∑
i=1

E[X−
i ; X−

i ≥ B] =
n0∑
i=1

E
[
E[X−

i ; X−
i ≥ B | Fn−1]

]

≤ 1

B

n0∑
i=1

E[σ2
i ] ≤ N/B ,
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where the last inequality follows from (2.12). It follows from this and (2.18), that

E[M−
µ ; β > µ] ≥ min

{
1

256

Nd0

AK2
,

1

24
Ad0

}
− 1

2
x0 −

N

B
. (2.19)

When M−
µ > 0, then τ ≤ n0 must hold, and when β > µ, then M−

µ < B. So,

P (τ ≤ n0) ≥ P (M−
µ > 0) ≥ P (M−

µ > 0; β > µ) ≥ E[M−
µ ; β > µ] /B .

From this and (2.19), it follows that

P (τ ≤ n0) ≥ min

{
1

256

Nd0

ABK2
,

1

24

Ad0

B

}
− 1

2

x0

B
− N

B2
.

The choice of

A = 29K2x0/d0, B = 219K4x0/d
2
0, N = 218K4x2

0/d
2
0

produces the bound

P (τ ≤ n0) ≥ d2
0 / 219K4 ,

which implies (2.10).

We now prove Theorem 1.1.

Proof of Theorem 1.1. It is not difficult to see that Mn converges on ∆c. For a given

N , define ν as at the beginning of the proof of Lemma 2.3. We set Mn = Mn∧(ν−1), which

is also a martingale starting at x0. Since
∑∞

i=1 σ2
i ≤ N (where σ2

i is the analogue of σ2
i ), it

follows that

E
[
|Mn − x0|

]2
≤ E

[
(Mn − x0)

2
]
≤ N for all n .

So, by the martingale convergence theorem, Mn converges a.s. to a finite limit. On ∆c,

Mn = Mn for all n, for large enough N (where N depends on the realization). It follows

that Mn converges a.s. to a finite limit on ∆c.

We still need to show that Mn is half-line recurrent on ∆. To do so, it is enough to

show τ < ∞ a.s. on ∆ for any x0 > 0. The basic idea is to repeatedly apply Lemma 2.3 to

martingales M (j)
n , j = 1, 2, . . ., where M (j)

n = Mmj+n for appropriately increasing mj.

We begin by introducing the following quantities. Choose Nj, j = 1, 2, . . ., to be an

increasing sequence, where Nj is large enough so that

P

(
Nj <

∞∑
i=1

σ2
i < ∞

)
≤ bj , (2.20)
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with bj = C1 /K42j+2 and C1 is as in (2.10). Choose mj to be an increasing sequence where

mj is large enough so that

P

(mj∑
i=1

σ2
i ≤ Nj <

∞∑
i=1

σ2
i

)
≤ bj . (2.21)

The mj will be the starting times for the martingales M (j)
n referred to above. Also, choose

yj large enough so that

P (Mmj
> yj) ≤ bj . (2.22)

We will later choose mj to depend on yj−1 in an appropriate manner.

We also introduce the following sets. Let

Fj = ∆ ∩ {τ > mj} , Gj =

{mj∑
i=1

σ2
i > Nj

}
, Hj = Gj ∩ {τ > mj} ∩ {Mmj

≤ yj} .

By (2.20),

P (Hj ∩∆c) ≤ P (F c
j ∩Hj) ≤ bj , (2.23)

and by (2.21) and (2.22),

P (Fj ∩Hc
j ) ≤ 2 bj . (2.24)

We will show P (Fj) decreases geometrically rapidly as j →∞; from this, it will follow that

τ < ∞ occurs a.s. on ∆. Most of the following estimates will involve P (Hj) rather than

P (Fj); (2.23) and (2.24) will be applied to P (Hj) to bound P (Fj).

Let M (j)
n = Mmj+n denote the martingale with σ-fields F (j)

n = Fmj+n, and τ (j) the

first hitting time of (−∞, 0] for M (j)
n . Define n

(j)
0 analogously to n0 in (2.9), with N =

C2K
4y2

j / d2
0. Since (1.4) is still satisfied and M

(j)
0 ≤ yj on Hj, it follows from Lemma 2.3

that on Hj,

P (τ (j) ≤ n
(j)
0 | Fmj

) ≥ a P (∆ | Fmj
)2

a.s. for a = C1 /K4; we assume WLOG that a ≤ 1/2. It therefore follows from Jensen’s

inequality, Hj ∈ Fmj
, and (2.23), that

P (Hj; τ (j) ≤ n
(j)
0 ) ≥ a

∫
Hj

P (∆ | Fmj
)2dP ≥ a P (Hj ∩∆)2 /P (Hj) ≥ a(P (Hj)− 2bj) .

Consequently,

P (Hj; τ (j) > n
(j)
0 ) ≤ (1− a) P (Hj) + bj . (2.25)

Choose mj+1 large enough so that both mj+1 ≥ mj + n
(j)
0 and (2.21) hold. Then,

P (Fj+1) = P (Fj; τ > mj+1) ≤ P (Hj; τ > mj+1) + P (Fj ∩Hc
j )
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≤ (1− a) P (Hj) + 3 bj ≤ (1− a) P (Fj) + 4 bj , (2.26)

where the middle inequality follows from (2.24) and (2.25), and the last inequality fol-

lows from (2.23). If one assumes P (Fj) ≤ (1 − a/2)j−1, then it follows from (2.26) that

P (Fj+1) ≤ (1 − a/2)j. By induction, the last inequality therefore holds for all j. Letting

j → ∞, this implies that τ < ∞ occurs a.s. on ∆, which completes the proof of Theo-

rem 1.1.

3. Proof of Theorem 1.4

The proof of Theorem 1.4 employs a version of the well known Skorokhod embedding, which

we first review. The embedding is most often applied to the sums Mn = X1 + . . . + Xn of a

sequence X1, X2, . . . of i.i.d. random variables with mean 0. One can embed Mn in a prob-

ability space (Ω,G, P ) supporting a standard Brownian motion W (t) so that at appropriate

stopping times α0 = 0, α1, α2, . . ., the differences W (αi)−W (αi−1) are i.i.d. having the same

distributions as X1. Setting M̃n = W (αn), the sequence M̃n therefore has the same joint

distributions as Mn. The stopping time αi is defined as the first time after αi−1 at which

W (t) hits either W (αi−1) + Yi or W (αi−1) − Zi, where Yi, Zi ≥ 0 are appropriately chosen

random variables that are independent of W (t). The choice of Yi and Zi can be made in

various ways. (See [5] for a detailed survey of the Skorokhod embedding.)

Here, we use the original embedding by Skorokhod in [6], where one chooses Yi and Zi

so that Yi(ω1) < Yi(ω2) implies Zi(ω1) ≤ Zi(ω2) for ω` ∈ Ω. For this choice, Yi = x+ implies

that Zi ≤ x−, where x− is the smallest value for which

E[X+
i ; X+

i > x+] ≥ E[X−
i ; X−

i > x−] . (3.1)

(When the distribution of Xi is continuous, Zi = x−, and the outside inequality in (3.1)

is replaced by equality. In [6], E[X2
i ] < ∞ is assumed, although this is not necessary, as

pointed out in [5] and elsewhere.)

The same embedding still applies when X1, X2, . . . are replaced by the increments of the

martingale Mn = x0 +X1 + . . .+Xn. Stopping times α0 = 0, α1, α2, . . . can be chosen so that

X̃i
def
= W (αi)−W (αi−1) has the same joint distributions as Xi, and so M̃n

def
= W (αn) has the

same joint distributions as Mn. As before, Yi and Zi are chosen so Yi(ω1) < Yi(ω2) implies

Zi(ω1) ≤ Zi(ω2). In this setting, Yi = x+ implies Zi ≤ x−, where x− is the smallest value

for which

E[X̃+
i ; X̃+

i > x+ | F̃i−1] ≥ E[X̃−
i ; X̃−

i > x− | F̃i−1] , (3.2a)

10



where F̃n = σ(X̃1, . . . , X̃n). This is equivalent to

E[X+
i ; X+

i > x+ | F ′
i−1] ≥ E[X−

i ; X−
i > x− | F ′

i−1] , (3.2b)

where F ′
n = σ(X1, . . . , Xn) ⊂ Fn. (If one wishes, one can WLOG set Fn = F ′

n, when given

Mn.) Let Nt denote the largest n with αn ≤ t, and Gt the σ-field generated by W (s), s ≤ t,

and Yi and Zi, i ≤ Nt + 1. The random variables Yi, Zi, and W (t) can be chosen so the

increments of W (s), on s > t, are independent of Gt. (This requirement, together with (3.2)

and the property that W (αn) and Mn have the same joint distribution, completely specifies

the joint distribution of W (t), Yi, and Zi.) It follows that W (t) will be a martingale with

respect to Gt.

Proof of Theorem 1.4. By the Doob decomposition, a supermartingale Mn can be written

as Mn = M ′
n − An, where M ′

n is a martingale and An is a nondecreasing sequence. So, it

suffices to show (1.7) under the assumption that Mn is a martingale. The second statement

in the theorem is an immediate consequence of (1.7) applied to both Mn and −Mn.

In order to show (1.7) for the martingale Mn, we employ the above Skorokhod embedding,

with the random variables introduced there. Let ∆ denote the set of realizations where

α∞
def
= limn→∞ αn = ∞. It is easy to see that on ∆c,

lim
n→∞

M̃n = lim
n→∞

W (αn) = W (α∞) .

So, M̃n converges on ∆c.

We will show that lim infn→∞ M̃n = −∞ a.s. on ∆. To do so, it is enough to show τ̃ < ∞
a.s. on ∆ for any x0, where τ̃ is the hitting time of (−∞, 0] by M̃n. Let β < ∞ be the

stopping time at which W (t) first hits −bx1. By the optional sampling theorem,

P
(
W (αNβ+1) = W (αNβ

)− ZNβ+1 | Gβ

)
=

W (αNβ
) + YNβ+1 + bx1

YNβ+1 + ZNβ+1

(3.3)

a.s. on β < α∞. Here, we are using that αNβ+1 > β, but αNβ
≤ β and YNβ+1, ZNβ+1 ∈ Gβ,

that W (β) = −bx1, and that W (αNβ+1) takes only the values W (αNβ
)+YNβ+1 and W (αNβ

)−
ZNβ+1. Since W (αNβ

) ≥ −bx1, the right side of (3.3) is at least YNβ+1 / (YNβ+1 + ZNβ+1).

Since M̃n = W (αn), it therefore follows that

P
(
M̃Nβ+1 = M̃Nβ

− ZNβ+1 | Gβ

)
≥

YNβ+1

YNβ+1 + ZNβ+1

(3.4)

a.s. on β < α∞.
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On the other hand, it follows from (1.6), and our choice of x− as the smallest value at

which (3.2) holds, that

x− ≤ b(x+ ∨ x1) . (3.5)

So, on YNβ+1 ≥ x1, the right side of (3.4) is at least 1/(b + 1). Since

M̃Nβ
− ZNβ+1 = W (αNβ

)− ZNβ+1 < W (β) = −bx1 < 0 ,

the event on the left side of (3.4) is contained in {τ̃ ≤ Nβ + 1}. Moreover, on YNβ+1 < x1,

one has ZNβ+1 < bx1, and so

M̃Nβ
= W (αNβ

) ≤ W (β) + ZNβ+1 < 0 , (3.6)

which implies τ̃ ≤ Nβ.

Together, these two cases imply that

P (τ̃ ≤ Nβ + 1 | Gβ) ≥ 1

b + 1
(3.7)

a.s. on β < α∞. Once can continue by setting β1 = β, and defining β2, β3, . . . inductively,

with βj being the first time after αNβj−1
+1 when W (t) hits −bx1. The same reasoning as

before produces the analogue of (3.7), but with βj substituted for β. Consequently,

P
(
τ̃ > Nβj

+ 1; ∆
)
≤ P

(
τ̃ > Nβj

+ 1; βj < α∞
)
≤
(

b

b + 1

)j

.

Letting j →∞ implies that τ̃ < ∞ a.s. on ∆, as desired.

4. A Martingale Transform Random Walk Example

By Corollary 1.2, the limit of a martingale transform of a random walk, with E[Z2] < ∞,

satisfies (1.5). We show here that (1.5) need not hold when E[|Z|p] < ∞, p ∈ [1, 2), is

instead assumed.

Fix p ∈ [1, 2). Let aj = 22j
, j = 2, 3, . . ., and let F be the distribution function with mass

2−ja−1
j at −a

1/p
j for j = 2, 3, . . . , and masses at 0 and 1 so that

∫∞
−∞ x F (dx) = 0. Let Zi be

i.i.d. random variables with distribution F . We choose the MTRW Mn = θ0Z1 + · · ·+θn−1Zn

with θn−1 = a−1/2
γn

where

γn = max
i≤n−1

bMic ∨ 2 .

(bxc denotes the integer part of x.) It is easy to check that E[|Zp|] < ∞, but E[Z2] = ∞.

We will show:
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Proposition 4.1. As n →∞, Mn →∞ a.s.

Proof. Set Zi = Zi 1Zi>−a
1/p
γi

and τ(j) = min{n : Mn ≥ j}. Note that for n > τ(j),

one has γn ≥ j, and so aγn ≥ aj. Our approach will be to compare Mn over the intervals

(τ(j), τ(j + 1)], j = 2, 3, . . ., with the random variables M
(j)

n obtained by replacing Zi with

Zi there. We will show that the probability Zi 6= Zi is negligible for large j, but that M
(j)
n

has a substantial cumulative positive drift over the interval. Comparison with Mn will imply

that Mn →∞ as n →∞.

It is easy to see that

P (Zi 6= Zi | Fi) =
∞∑

k=γi

2−ka−1
k ≤ C12

−γia−1
γi

, (4.1)

for an appropriate constant C1. Also,

E[Zi | Fi−1] = E
[
−Zi 1Zi≤−a

1/p
γi

| Fi−1

]
=

∞∑
k=γi

2−ka
1
p
−1

k ≥ C22
−γia

1
p
−1

γi ,

for an appropriate constant C2 > 0, and so

E[θi−1Zi | Fi−1] ≥ C22
−γia

1
p
− 3

2
γi . (4.2)

Similarly,

Var(θi−1Zi | Fi−1) ≤ E[θ2
i−1Z

2
i | Fi−1] = a−1

γi

γi−1∑
k=2

2−ka
2
p
−1

k ≤ C32
−γia

1
2p
− 5

4
γi , (4.3)

for an appropriate constant C3. The last inequality uses the rapid growth of ak.

Set µj = C22
−ja

1
p
− 3

2

j . By (4.1) and our observation that aγi
≥ aj for i > τ(j),

P

(
Zi 6= Zi for some i ∈

(
τ(j), τ(j) + 2dµ−1

j e
])

≤ C12
−j+2a−1

j µ−1
j = C4a

1
2
− 1

p

j , (4.4)

for C4 = 4C1C
−1
2 . (dxe denotes the smallest integer at least x.) Also, by the Kolmogorov

inequality for martingales, (4.2), and (4.3),

P

 n∑
i=τ(j)+1

(θi−1Zi − µj) ≤ −1 for some n ∈
(
τ(j), τ(j) + 2dµ−1

j e
]

≤ 4µ−1
j · C32

−ja
1
2p
− 5

4

j = C5 a
1
2
( 1
2
− 1

p
)

j

for C5 = 4C−1
2 C3. Together with (4.4), this implies that

P

 n∑
i=τ(j)+1

(θi−1Zi − µj) ≤ −1 for some n ∈ (τ(j), τ(j) + 2dµ−1
j e]

 ≤ (C4 + C5) a
1
2
( 1
2
− 1

p
)

j .
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On this last event, τ(j + 1) ≤ τ(j) + 2dµ−1
j e, and so (since µj > 0),

P

 n∑
i=τ(j)+1

θi−1Zi ≤ −1 for some n ∈ (τ(j), τ(j + 1)]

 ≤ (C4 + C5) a
1
2
( 1
2
− 1

p
)

j .

Summing over j′ ≥ j, it follows that

P (Mn ≤ j − 1 for some n > τ(j)) ≤ C6 a
1
2
( 1
2
− 1

p
)

j

for an appropriate constant C6. This will imply Mn →∞ a.s. once we know τ(j) < ∞ a.s. for

all j. But, Mn executes a mean 0 random walk over [τ(j), τ(j+1)], since θi is constant there.

Such a random walk is recurrent and so, in fact, τ(j) < ∞; hence, Mn →∞ a.s., as desired.
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