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Abstract. We consider various voter game theory models which involve some form of
random selection, including random tie-breaking, and single elimination, and runoff of the
top two candidates. Under certain rules for resolving ties, we prove that with any number
of candidates, each such model has a Nash equilibrium in which all candidates attempt to
contest the election at the median policy. For models which do not permit ties, we prove
that each such model has a Nash equilibrium in which the number of candidates contesting
the election is essentially equal to the ratio of the positive payoff for winning divided by the
negative of the payoff for losing. All of these model variations thus predict lots of candidates.
This result contrasts with Duverger’s Law, which asserts that only two (major) candidates
will contest the election at all, and which has been confirmed in some other voter game theory
models. However, it is consistent with recent primary and leadership and runoff elections
where the number of major candidates reached two figures. We close with a simulation study
showing that, through repeated elections and averaging and tweaking, candidates’ actions
will sometimes converge to their predicted equilibrium behaviour.
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1 Introduction

Duverger’s Law (Duverger, 1951; Riker, 1982; Schlesinger and Schlesinger, 2006) claims

that certain vote systems tend towards outcomes in which only two parties contest elections

while all other parties stay out. Empirically, this law is roughly consistent with elections

in the United States with just two major parties (Democratic and Republican), though

somewhat less so for elections in Canada and the United Kingdom and other countries

which have more than two major parties.

By contrast, many real-world party primaries and leadership conventions and run-off

style elections have many more candidates. For example, the 2016 U.S. Republican Party

presidential primary featured a total of 17 mostly credible candidates (much more than

two!). Similarly, an impressive 14 candidates entered the 2017 Conservative Party of Canada

leadership contest. And, 11 candidates entered the first round of the 2017 French presidential

election.
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Mathematically, vote systems are often modelled using game theory, with candidate

actions governed by Nash equilibria. It is known (see Section 2 below) that some standard

voter models lead to conclusions consistent with Duverger’s Law, i.e. with only two significant

candidates. By contrast, this paper considers Nash equilibria for different game theory

voter models, focusing on the question of which models lead to many different candidates

contesting elections. We shall show that for some slightly modified models, many more than

two candidates will enter.

Our model modifications below correspond to different ways of determining the election

winner from among many candidates, including: multiple candidates at the same exact

position are first widowed down to one, either through random selection or through forming

alliances; the lowest candidate is eliminated sequentially (as in many party primaries); or

the winner is chosen by a runoff of the top two candidates (as for e.g. the French presidency).

We consider these model modifications either with (Section 4) or without (Section 7) the

common but counter-intuitive (see Section 6) game theory rule that equal candidates can

“tie” for winning the election, and each receive a fraction of the (positive) payoff.

With that “ties” rule, we prove (Theorem 1) that for each of our modified models, there is

a Nash equilibrium in which all of the candidates all contest the election, all coming in at the

same median position. Without that rule, we prove (Theorem 2) that for each of our modified

models, there is a Nash equilibrium in which the number of candidates contesting the election

is essentially equal to the ratio of the positive payoff for winning an election, divided by the

negative of the payoff for losing. (More precisely, it is equal to the floor of this ratio plus

one, assuming that many potential candidates are available.) Finally, we present (Section 9)

a simulation study showing that, through repeated elections and averaging and tweaking,

candidates’ actions will sometimes converge to their predicted equilibrium behaviour.

In short, our results predict that in the models we study, there will be many candidates

who contest the election, not just two. These large numbers of candidates are in sharp

contrast with Duverger’s Law, however they are consistent with the real-world examples

discussed above, and they do follow naturally from the models considered herein.
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2 Background

Nash equilibria (Nash, 1951) are often used to model strategies of political candidates

in elections. In one standard model (see e.g. Hotelling, 1929; Downs, 1957; Osborne, 2003),

political positions are considered to be real numbers, and voters’ opinions are distributed

according to some fixed probability density v on the real line, and each of n different political

candidates either stakes out some position xi ∈ R, or chooses not to contest the election at

all by selecting “OUT”. Then, each voter votes for the candidate whose position is closest

to their own (dividing their vote equally between multiple equally-close candidates). The

payoff for each political candidate is 0 if they do not contest the election, or +1 if they

receive the most votes, or −1 if they contest the election and receive fewer votes than some

other candidate, or 1/k if they tie for most votes with a total of k different candidates. (For

precise definitions, see Section 3 below.)

With just n = 2 candidates, the Nash equilibrium for this model is straightforward.

Namely, both candidates will contest the election with political position equal to the median

value m of v, i.e. x1 = x2 = m where m is chosen such that
∫ m
−∞ v(t) dt = 1/2. In this way,

they each tie and thus receive equal expected payoff (in any reasonable model). On the other

hand, if either candidate deviates to another position xi 6= m, then (assuming v is positive

in a neighbourhood of m) they will receive fewer votes than the other candidate, and thus

receive payoff of −1 which is less than 1/2. Or, if either candidate deviates to xi = OUT,

then they will receive payoff of 0 which is again less than 1/2. So, neither candidate can gain

by deviating from the position xi = m. It follows that the choice x1 = x2 = m is a Nash

equilibrium (in fact strict, since any deviation leads to a lower payoff).

However, if n ≥ 3, then the situation is very different. For example, if the first two

candidates each choose the median position x1 = x2 = m, then the third candidate can

deviate to a position x3 which is slightly more than m. Candidate 3 will thus win nearly

half of the votes, while Candidates 1 and 2 will divide the remaining votes equally and thus

each win just over a quarter of the votes. So, Candidate 3 will receive payoff of +1, which

is more than the 1/3 payoff they would receive by coming in at x3 = m. Indeed, it is known

(see e.g. Eaton and Lipsey, 1975; Shaked, 1982; Osborne, 1993) that there is no pure (i.e.,

non-random) Nash equilibrium in the standard model with n = 3. By contrast, Hug (1995)

has shown the existence of Nash equilibria with three candidates for a different model in

which candidates attempt to maximise their votes (without any negative payoff for losing),
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but the policy they will later enact is randomly distributed about their intended choice,

and voters attempt to minimise a quadratic loss function based on this random distribution.

And, Rosenthal (2016b) presents a modification in which candidates’ positions are perceived

with uncertainty, which admits a three-candidate Nash equilibrium with x1 = x2 = x3 = m.

Another modification (Osborne, 1996) has the candidates choose their positions sequen-

tially, so that candidate i can base their position on the already-chosen positions of candi-

dates 1, 2, . . . , i− 1. For this model, it is conjectured that just the first and last candidates

will contest the election, each with position equal to the median m, while the other n − 2

candidates will all stay out. Osborne’s conjecture has been proven for n = 2 and n = 3 and

n = 4, and verified by simulation for n as large as 7 (Rosenthal, 2016a). However, it has

been disputed when n = 12 (de Vries, 2015; de Vries et al., 2016), though even there it still

appears that exactly two candidates – the second and twelfth in this case – will enter the

election at position m while the other n − 2 candidates choose OUT, still consistent with

Duverger’s Law.

These various results indicate that Duverger’s Law holds in the standard model with

n = 2 as discussed above, and also in the context of Osborne’s sequential conjecture (as far

as it has been verified), though it does not hold in some other models. In addition, in the

context of runoff-style elections, Bouton and Gratton (2015) consider a different model in

the case of only n = 3 candidates, and argue that for their model there exist “Duverger’s

law equilibria” in which only two candidates obtain nonzero expected vote share, again

essentially consistent with Duverger’s Law.

In the present paper, we consider a number of simple modifications of the standard model,

each of which admits many candidates contesting an election. This is in strong contrast to

Duverger’s Law, but is consistent with empirical evidence from primaries and runoff elections

as discussed above, to it might be more useful for modelling such contests.

3 The Standard Voting Model

We next define a precise standard game theory model for such voting. We assume

throughout that there is some voter probability density v on R, with median value m,

such that v positive in some neighbourhood of m. (For example, perhaps v is the density

of the Uniform[0,1] density, with median m = 1/2.) We further assume there is some posi-
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tive number n ∈ N of candidates. Each candidate simultaneously chooses a policy position

xi ∈ R on which to contest the election, or else chooses xi = OUT.

Each candidate who chooses OUT does not contest the election at all, and receives a

payoff of 0. Each candidate who does not choose OUT contests the election, with candidate

i receiving the vote share wi given by

wi =

∫
t∈Ri

v(t) dt

#{j : xj = xi}
. (1)

Here Ri = {t ∈ R : |t − xi| ≤ |t − xj| for all 1 ≤ j ≤ n} is the vote region won (or tied for

winning) by Candidate i, i.e. the set of policy positions which are as close to xi as to any

other candidate position xj. And, #{j : xj = xi} is the number of candidates who chose

precisely the same position as Candidate i.

Then, if one candidate wins the election outright (i.e., obtains the strictly largest vote

share), then they receive a payoff of +1. If k ≥ 2 candidates all tie for the largest vote share,

then they each receive a payoff of 1/k. If a candidate contests and loses the election, then

they receive a payoff of −1.

In this paper, we consider some modifications of this model. We divide our models into

two classes. The first, like the above standard model, allows for the possibility that multiple

candidates will tie for winning the election and share the positive payoff.

4 Ties Case: Models

We next define several different but related voter models, all of which (like the standard

model) allow for the possibility of ties. In all cases, we assume there are a total of n

candidates, that each candidate can choose a position xi ∈ R or OUT, and that there is a

voter density function v which is positive in a neighbourhood of its median value m.

4.1 Model #1: Random Selection

In our first model, if multiple candidates all choose the exact same position xi, then

one of those candidates is selected uniformly at random to contest the election; all other

candidates having the same value of xi are removed from the election and receive a payoff

of 0.
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Once those tying candidates have been removed, then the remaining candidates have

their win regions Ri and the vote shares wi computed as usual as in equation (1). Then, as

usual, if k candidates tie for the highest vote share then they each receive a payoff of 1/k,

while any candidates who remain in the election but obtain less than the highest vote share

receive a payoff of −1. (And once again, any candidate who chooses OUT receives a payoff

of 0.)

In summary, this game proceeds exactly like the usual model, except that when multiple

candidates choose the same position xi then duplicate entries are removed from the election

at random. This model thus breaks ties from equal positions of multiple candidates by an

arbitrary random selection among the multiple candidates.

4.2 Model #2: Combined Alliances

Our second model is similar to our first, but with one difference. This time, if r ≥ 2

candidates all choose the exact same position xi, then those r candidates are all combined

into a single alliance. That is, they are all replaced by a single candidate. The election then

proceeds as usual with this single candidate, according to the usual formula (1). Once the

election is concluded, each of the r original candidates receive 1/r of whatever payoff their

combined single candidate obtains.

4.3 Model #3: Two-Round Runoff

Our third model is as follows. As usual, each candidate who chooses OUT receives a

payoff of 0. Then, the vote share wi of each candidate who is not OUT is computed as usual

as in (1). If all of the wi are equal, then all k of the remaining candidates tie for winning the

election, and each receive payoff of 1/k. Otherwise, the two candidates with the highest vote

shares (selected uniformly randomly if necessary) are advanced to the runoff election, while

all the other candidates who are not OUT are eliminated and receive a payoff of −1. The

two remaining candidates’ vote shares are re-computed again as in (1) (but now disregarding

all but the two remaining candidates), and the candidate with the lowest vote share is again

eliminated (and also receives a payoff of −1). The one remaining candidate is declared the

winner (and thus receives payoff of +1).

In practice, this two-round runoff system is used in many places, for example to elect the
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presidents of France and of Argentina.

4.4 Model #4: Sequential Elimination

This model proceeds by repeatedly removing the candidate with the fewest votes. That

is, each candidate who chooses OUT receives a payoff of 0 as usual. Then, at the first step,

the vote share wi of each candidate who is not OUT is computed as usual as in (1). If all

of the remaining positions xi are all equal, then all k of the remaining candidates tie for

winning the election, and each receive payoff of 1/k. Otherwise, whichever candidate has

the lowest value of wi is eliminated from the election, and thus loses and receives a payoff of

−1. (Note: if some number r ≥ 2 of candidates all tie for having the lowest vote share, then

one of those r tying candidates is selected uniformly at random for elimination; the other

r − 1 tying candidates are not eliminated, and proceed to the next step of the elimination.)

The remaining candidates’ vote shares are then re-computed again as in (1) (but now

disregarding all candidates who have already been eliminated), and the candidate with the

lowest vote share is again eliminated. This process is repeated until either only one candidate

remains so that candidate is declared the winner (and thus receives payoff of +1), or some

number k of candidates remain and all have the same exact position xi, in which case they

all tie for winning (and each receive payoff of 1/k).

In practice, this sequential elimination system can be accomplished either through a single

preferential ballot (sometimes called “instant-runoff”), or through multiple rounds of voting.

It is in fact used in many cases around the world, e.g. for Australian parliamentary elections

and for some party leadership contests in Canada and in the U.K. It also “essentially” applies

to U.S. presidential primary contests, since candidates there who perform poorly in early

state contests tend to drop out sequentially as the long primary process continues.

5 Ties Case: Main Result

We now show the existence of a Nash equilibrium for each of the above models, for any

number n of candidates.

Theorem 1 For each of the above Models #1 and #2 and #3 and #4, for any number

n ∈ N of candidates, the set of positions x1 = x2 = . . . = xn = m is a Nash equilibrium, i.e.

7



with this choice no one candidate can increase their expected payoff by changing their action

while the other n− 1 actions remain fixed.

Proof. If n = 1 the statement is trivial, and if n = 2 then it follows as in the standard

model since neither candidate can improve their expected payoff to more than 1/2 while the

other candidate still comes in at m. Thus, we assume that n ≥ 3.

Suppose x1 = x2 = . . . = xn = m. Our models have all been constructed so that

in this case, each candidate receives expected payoff 1/n. We need to show that no one

candidate can increase their expected payoff above 1/n. Now, if a candidate switches to

OUT then their expected payoff becomes 0, which is less than 1/n, so they do not benefit

by switching. It remains to consider the case where one candidate, say candidate 1, changes

to some other position x1 6= m, while the remaining candidates’ positions remain at m. We

do this separately for each of the models.

We begin with Model #1. Since all other n − 1 candidates still have xi = m, therefore

n− 2 of them (chosen at random) will be eliminated from the election. We will be left with

one single candidate i at position xi = m, plus candidate 1 at position x1 6= m. In that

case, since m is the median value of v, it follows (using the positivity of v near m) that

Candidate i will obtain a strictly greater vote share than Candidate 1. Thus, Candidate 1

will receive a payoff of −1, which is less than 1/n, so that Candidate 1 does not benefit by

switching.

The argument for Model #2 is similar. Indeed, there, if x1 6= m while x2 = x3 = . . . =

xn = m, then Candidates 2 through n will be combined into a single alliance, which will

then defeat Candidate 1 as above. So, Candidate 1 will again receive a payoff of −1, which

is again less than 1/n.

For Model #3, several cases must be considered. If Candidate 1 moves far enough away,

then they will have fewer votes than the other n− 1 candidates. In this case, they will not

make the runoff at all. If they move exactly the right distance away, then they will tie with

the other n− 1 candidates, and thus have probability 2/n of making the runoff. Or, if they

move less far away, then they will definitely make the runoff. But in any case, if they do not

make the runoff then they lose and receive payoff −1, while if they do make the runoff, then

as above they will receive fewer vote shares than the other runoff candidate (who will be at

position m) and thus will still lose and still receive payoff −1. In short, if Candidate 1 moves
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to any position x1 6= m, then they will eventually lose the election (either immediately or in

the runoff) and thus receive expected payoff of −1, so in any case they will not benefit by

switching.

For Model #4, depending on how far away Candidate 1 moves, they might be eliminated

earlier or later in the sequential elimination. However, even if they survive the first n − 2

elimination steps, at the final step they will be competing against a single candidate at

position m, and at that point they will lose as above. So, in any case, they will end up losing

the election, and will thus again receive expected payoff of −1 which does not benefit them.

(Furthermore, until Candidate 1 is eliminated, there will always be at least one candidate

at position x1 6= m, and at least one candidate at position m, so the rule about “if all of

the remaining positions xi are all equal” will not be invoked. For more about this issue, see

Section 6 below.)

In summary, for each of the four models, if x1 = x2 = . . . = xn = m, then no candidate

can improve their expected payoff by switching to another action, i.e. by going OUT or by

choosing a different value xi. Thus, for any n, the set of actions x1 = x2 = . . . = xn = m is

a Nash equilibrium for this model, as claimed.

6 Ties: Discussion

So far, we have only considered models which, like the standard model, allow for the

possibility of ties. However, this may be unrealistic, since most real elections require that a

unique winner be chosen, and indeed have some prescribed mechanism (such as a coin toss,

or a new election) for selecting among tied candidates.

Furthermore, the rules for resolving ties have to be specified in just the right way for

Theorem 1 to hold. This is best illustrated in Model #4 (sequential elimination). There,

it was specified that if all k remaining candidates all have the exact same position xi then

they each receive payoff 1/k. It might be more natural to say that whenever all k remaining

candidates all simply have the same vote share wi then they each receive payoff 1/k, but

this would actually lead to a different result!

Specifically, consider Model #4 with this slight modification, with n ≥ 4, and with

x1 = x2 = . . . = xn. Then we claim that Candidate 1 can increase their payoff from 1/n
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to 1/3 by switching from x1 = m to x1 = z, where z < m is chosen precisely so that∫ (z+m)/2

−∞ v(t) dt = 1/3. Indeed, in that case, n − 3 other candidates at position xi = m will

first be eliminated, at which point there will be 3 candidates left, with positions (z,m,m).

At this point, according to the usual formula (1), each of the three candidates will receive

vote share w1 = w2 = w3 = 1/3. So, with the slight modification, at that point a three-way

tie would be declared, and each candidate would thus receive payoff 1/3, which is better

than the original 1/n ≤ 1/4.

Similarly, it was necessary to specify in Model #1 (random selection) that additional

candidates at the same position are “removed” from the election and receive payoff 0. It

might be more realistic to assume that such candidates actually lose the election and instead

receive payoff −1. But again, this would change the results, since if e.g. n = 3 with x1 = x2 =

x3, then under this modification each candidate would receive expected payoff (1/3)(+1) +

(2/3)(−1) = −1/3 < 0 and would thus prefer to change to OUT.

Such considerations led us to re-consider the “ties” rules entirely. We eventually decided

that the most realistic models should produce a single winner, with no ties. To achieve this,

any apparent ties should be broken randomly and uniformly. In practice this might corre-

spond to an actual coin toss or other random resolution. Alternatively, it might correspond

to the realisation that even if candidates are exactly tied in terms of their electoral support,

certain minor randomness – such as a few citizens getting flat tires and failing to vote –

would usually be sufficient to break the tie somehow.

When considering models without ties, a major difference arises even in the case where

x1 = x2 = . . . = xn = m. In the standard model, and in each of the previous modifications,

this set of actions gives a payoff of 1/n to each candidate. However, without ties, each

candidate would then have probability 1/n of winning the election and receiving payoff of

+1, and probability 1 − (1/n) of losing the election and receiving payoff of −1. This gives

each candidate an overall expected payoff of (1/n)− (1− (1/n)) = (2/n)− 1. In particular,

for n > 2, this expected payoff is negative, so it is now better for each candidate to stay

OUT rather than to contest the election even when every candidate chooses the same exact

position.

To address this issue, we next consider some models in which the candidate who wins

the election receives a payoff of α, for some constant α > 0, not necessarily +1. The payoff

for losing remains −1, so α corresponds to the ratio of how good it is to win, divided by
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how bad it is to lose. It seems reasonable that α could be quite large, since winning an

election is much more significant and impactful than merely contesting and losing it. In

the standard model, the precise value of α is completely irrelevant as long as it is positive,

since randomness is never used to determine winners and losers. In our models with ties,

the value of α is again mostly irrelevant, since only in certain limited cases does a candidate

have positive probabilities of both winning and losing. However, in models without ties, the

value of α is crucial, as we shall see. Roughly, in the above scenario, each candidate now

has expected payoff (1/n)(α)− (1− (1/n)) = (α+ 1−n)/n, which is non-negative whenever

n ≤ α + 1. This suggests that the number of candidates who contest the election should be

governed by the value of α, which is indeed the case (as we shall see in Theorem 2 below).

7 No-Ties Case: Models

We next define several different voter models, similar to the previous models, but now

not allowing for the possibility of ties. We again assume there are a total of n candidates,

that each candidate can choose a position xi ∈ R or OUT, and that there is a voter density

function v which is positive in a neighbourhood of its median value m. We also assume a

fixed constant α > 0 corresponding to the payoff for winning the election.

7.1 Model #1*: Random Selection Without Ties

In our first model, if multiple candidates all choose the exact same position xi, then

one of those candidates is selected uniformly at random to contest the election. All other

candidates having the same position xi lose the election and receive a payoff of −1.

Once those other candidates have been removed, then the remaining candidates have their

win regions Ri and the vote shares wi computed as in equation (1). Then, if k candidates

tie for the highest vote share then one of them is selected uniformly at random and wins the

election and receives payoff α, while the other k − 1 tying candidates, as well as any other

candidates who remain in the election but obtain less than the highest vote share, lose and

receive a payoff of −1. (As usual, any candidate who chooses OUT receives a payoff of 0.)
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7.2 Model #2*: Combined Alliances Without Ties

In this model, if r ≥ 2 candidates all choose the exact same position xi, then those r

candidates are all combined into a single alliance candidate. The election then proceeds

with the alliance candidates and all candidates with unique positions. Vote shares for those

candidates are determined according to (1). As above, if k candidates tie for the highest vote

share then one of them is selected uniformly at random and wins the election and receives

payoff α, while the other k− 1 tying candidates, as well as any other candidates who remain

in the election but obtain less than the highest vote share, lose and receive a payoff of −1.

(And, as usual, any candidate who chooses OUT receives a payoff of 0.)

Once the election is concluded, each of the r original candidates who were combined into

a single alliance each receive 1/r of whatever payoff their combined single alliance candidate

obtained.

7.3 Model #3*: Two-Round Runoff Without Ties

This model proceeds as follows. Each candidate who chooses OUT receives a payoff of 0.

The vote share wi of each candidate who is not OUT is computed as in (1). Among the

candidates who have or are tied for the highest or second-highest (counted with repetition)

vote share, two are selected uniformly at random to advance to the runoff election, while all

the other candidates who are not OUT are eliminated and receive a payoff of −1. The two

remaining candidates’ vote shares are re-computed again as in (1) (but now disregarding all

but the two remaining candidates), and the candidate with the lowest vote share is again

eliminated (and also receives a payoff of −1). The one remaining candidate is the winner

and receives payoff α.

7.4 Model #4*: Sequential Elimination Without Ties

In this model, once again, each candidate who chooses OUT receives a payoff of 0. Then,

at the first step, the vote share wi of each candidate who is not OUT is computed as in (1).

Whichever candidate has the lowest value of wi is eliminated from the election (with ties

broken by a uniform random selection), and thus loses and receives a payoff of −1. The

remaining candidates’ vote shares are re-computed again as in (1) (but now disregarding all

candidates who have already been eliminated), and the candidate with the lowest vote share
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is again eliminated and receives payoff −1. This process is repeated until only one candidate

remains, at which point that candidate is declared the winner and receives payoff α.

8 No-Ties Case: Main Result

We now show the existence of a Nash equilibrium for each of the above models, for any

value of n. (Below, bαc is the floor of α, i.e. the greatest integer not exceeding α.)

Theorem 2 For each of the above Models #1* and #2* and #3* and #4*, for any number

n ∈ N of candidates, and for any subset S ⊆ {1, 2, . . . , n} with |S| = min(n, bαc + 1), the

set of actions in which all candidates i for i ∈ S contest the election at position xi = m,

and all candidates i for i 6∈ S stay OUT, is a Nash equilibrium, i.e. with this choice no one

candidate can increase their expected payoff by changing their action while the other n − 1

actions remain fixed. Furthermore, if n ≥ 2 and α > 1 and α is not an integer, then this

set of actions is a strict Nash equilibrium, i.e. any one candidate’s change of action strictly

decreases their expected payoff.

To prove Theorem 2, we begin with a lemma.

Lemma 1 For each of the above Models #1* and #2* and #3* and #4*, for any number

n ≥ 2 of candidates, if there are r candidates at position m where 1 ≤ r ≤ n − 1, and one

candidate j at a different position xj 6= m, and the remaining n− r − 1 ≥ 0 candidates are

all OUT, then Candidate j will lose the election.

Proof. We begin with Model #1. Since r candidates are at position m, therefore r − 1

of them (chosen at random) will be eliminated from the election. We will be left with one

single candidate i at position xi = m, plus candidate j at position x1 6= m. In that case, it

follows (as in the proof of Theorem 1) that Candidate i will obtain a strictly greater vote

share than Candidate j, so Candidate j will lose the election.

Model #2 is similar. In this case, all the candidates at position m will be combined into

a single alliance at position m, which will then defeat Candidate j as above, so Candidate j

will again lose.

For Model #3, as before, if Candidate 1 moves far enough away, then they will have

fewer votes than the other n − 1 candidates and lose immediately, or if they move exactly
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the right distance away then they will tie with certain other candidates and thus have a

certain probability of making the runoff, or if they move less far away then they will have

the largest vote share and thus definitely make the runoff. But even if they do make the

runoff, then in the runoff they will compete with a single other candidate at position m, so

as above they will receive fewer vote shares and thus still lose and still receive payoff −1.

For Model #4, the argument is very similar to the corresponding proof of Theorem 1.

Again, depending on how far xj is from m, Candidate j might be eliminated earlier or later

in the sequential elimination. But even if they survive until only two candidates remain, nev-

ertheless at the final step they will be competing against a single candidate at position m,

and at that point they will lose the election and receive −1 just as above.

Proof of Theorem 2. If n = 1, then for any α > 0, min(n, bαc+ 1) = 1 so we must have

S = {1}, i.e. Candidate 1 comes in at m and receives payoff α > 0. This is clearly a Nash

equilibrium (though not strict), since if they deviate to OUT then they reduce their payoff

to 0, while if they deviate to some other position x1 ∈ R then they still win the election and

still receive the same payoff α.

If n ≥ 2 and 0 < α < 1, then again min(n, bαc + 1) = 1, so just one of the candidates

comes in at m. Suppose for definiteness that x1 = m while x2 = . . . = xn = OUT. Then

Candidate 1 wins the election and receives payoff of α > 0, while each Candidate i for i ≥ 2

stays out and receives payoff of 0. If Candidate 1 deviates to some other value x1 ∈ R,

then they still win the election and still receive the same payoff α, while if they deviate

to OUT then they receive the smaller payoff 0. If Candidate i for some i ≥ 2 deviates to

x2 = m, then they have probability 1/2 of winning the election, so their expected payoff

is (1/2)(α) + (1/2)(−1) = (α − 1)/2 < 0 which is strictly worse than staying out. Or, if

Candidate i for some i ≥ 2 deviates to some other value xi ∈ R \ {m}, then they will lose

the election to Candidate 1 by Lemma 1, so their payoff will be −1 < 0. So, this is indeed

a Nash equilibrium (though not strict).

Finally, we consider the case where n ≥ 2 and α ≥ 1. In this case, the claimed equilibrium

has some number min(n, bαc + 1) ≥ 2 of candidates at position m, while the remaining

n−min(n, bαc+ 1) candidates stay OUT. We have to show that any one candidate’s change

of action does not increase their expected payout, and strictly decreases it if α is not an

integer.

14



Consider first a candidate at position m. They have probability 1/min(n, bαc + 1) of

winning the election, or 1− (1/min(n, bαc+ 1)) of losing, and thus initial expected payoff(
1

min(n, bαc+ 1)

)
(α) +

(
1− 1

min(n, bαc+ 1)

)
(−1) =

α + 1−min(n, bαc+ 1)

min(n, bαc+ 1)

≥ α + 1− (bαc+ 1)

min(n, bαc+ 1)
=

α− bαc
min(n, bαc+ 1)

,

which is ≥ 0, and strictly > 0 if α is not an integer. If they deviate to OUT, then their

payoff becomes 0, which is not more than their initial expected payoff (and strictly less if α

is not an integer). If instead they deviate to some other position 6= m, then they will lose

the election by Lemma 1, and thus receive payoff −1, which is strictly less than their initial

expected payoff.

If min(n, bαc + 1) < n, i.e. bαc + 1 ≤ n − 1, then there are also some candidates who

are initially OUT, with payoff 0. Then, if one such candidate deviates to coming in at a

position 6= m, then by the Lemma 1 they will lose the election and receive payoff −1. If

instead one such a candidate deviates to coming in at position m, then they will be one of

min(n, bαc+ 1) + 1 = bαc+ 2 candidates at m. They will then have probability 1/(bαc+ 2)

of winning the election, and (bαc+ 1)/(bαc+ 2) of losing, so their expected payoff will be(
1

bαc+ 2

)
(α) +

(
bαc+ 1

bαc+ 2

)
(−1) =

α− bαc − 1

bαc+ 2

which is < 0 since we always have α− bαc < 1. Hence, in either case, their expected payoff

will strictly decrease from 0 to a negative value.

In summary, for each of the four models, if xi = m for i ∈ S while xi = OUT for i 6∈ S
where |S| = min(n, bαc+ 1), then if any one candidate switches to another action then their

expected payoff will not increase (and will strictly decrease under the specified conditions).

This proves the result.

9 Finding Equilibria Through Repeated Tweaks

The previous results all concern equilibrium behaviour, and state that if candidates are

behaving a certain way, then they have no incentive to change. However, this does not

address the question of how the candidates might find such equilibrium behaviour in the

first place.

15



Specifically, we imagine that elections will be repeated many times, and the candidates

see the results each time. Occasionally a candidate will try changing their action, and see

if that seems to improve their expected payoff. If it does, then they will stick with the new

action; if not, then they will revert to their previous action. If this updating is repeated many

times, will the candidates converge to equilibrium behaviour as in the above theorems?

9.1 Computer Program

To test this, we wrote a computer program in C (available at probability.ca/runoff.c) to

simulate this repeated candidate updating algorithm.

For simplicity, we stick to our Model 4* above (sequential elimination without ties), which

we consider to be our most interesting model, though similar simulations could be performed

for our other models too. For definiteness, we let the voter distribution v be the Uniform[0,1]

density throughout. To create a discrete model for easier simulation, we restrict all of our

candidate actions to either OUT or one of the eleven fixed positions 0.0, 0.1, 0.2, . . ., 1.0.

The program then proceeds by repeatedly selecting a candidate at random, having them

try a random new action for some number av of elections, computing (random) payoffs each

time according to the rules for Model 4*, and then averaging all of the resulting payoffs

together. (Thus, the candidate does not know their true expected payoff value, but merely a

random unbiased estimate of it. This is somewhat similar to “pseudo-marginal MCMC”; see

Andrieu and Roberts, 2009.) The selected candidate then checks to see if their average payoff

appears to have increased as a result of their action tweak. If it does, then that candidate

switches to the new action, otherwise they revert to their previous action. This updating is

repeated a total of reps times. The corresponding algorithm is summarised as Algorithm 1:
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Algorithm 1 Algorithm to Search for Equilibria (given n, α, reps, and av)

for i = 1, 2, . . . , n do
xi ← random action

end for
curpayoffvec ← avrpayoffvec(x1, x2, . . . , xn).
sumvec ← (0, 0, . . . , 0)
numcounted ← 0
for r = 1, 2, . . . , reps do

Choose γ ∈ {1, 2, . . . , n} uniformly at random.
x′γ ← random action
newpayoffvec ← avrpayoffvec(x1, x2, . . . , xγ−1, x

′
γ, xγ+1, . . . , xn).

if newpayoffvec[γ] > curpayoffvec[γ] then
xγ ← x′γ.
curpayoffvec ← newpayoffvec

end if
if r > burnin then

sumvec = sumvec + curpayoffvec
numcounted = numcounted + 1

end if
end for
return (sumvec / numcounted)

procedure avrpayoffvec(z1, z2, . . . , zn)
for a = 1, 2, . . . , av do

Assume the candidate actions are given by {zi}.
while number of candidates competing in the election > 1 do

Compute all candidate payoffs as in (1).
Select one candidate from among those with the lowest vote share.
Eliminate that one candidate from the election.

end while
Assign payoff α to the remaining candidate, −1 to all eliminated, and 0 to all OUT.

end for
return The average of the av different payoff vectors for the n candidates.

end procedure

9.2 Results

We next compare the average results from our algorithm simulations to the theoretical

equilibria values, for a variety of parameter settings. The algorithm generally does a fairly

good job of finding the equilibrium behaviour. In particular, it usually (though not always)

relegates all candidate actions to either 0.5 (i.e. the median value of v) or to OUT. In some
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cases, it finds approximately the correct number of candidates to come in at 0.5, while in

other cases it tends to have too many candidates stay OUT.

Below, we graph the comparison between the theoretical average counts (blue, left) and

the simulation average counts (red, right) for each possible action, for different parameter

choices. (We set the value of burnin to be reps/2 throughout.)

We begin with the case of n = 5 candidates, and win payoff 2 < α < 3. In that

case, Theorem 2 predicts that min(n, bαc + 1) = 3 of the 5 candidates will enter at 0.5,

with the other 2 candidates staying OUT. With reps = 1, 000, and α = 2.5, and with the

number of averages av equal to just 10, the algorithm already does fairly well at finding this

equilibrium, though it slightly underestimates the average number of candidates at 0.5 and

correspondingly overestimates the number who stay OUT. By contrast, increasing α to 2.9

(which makes no difference to Theorem 2 since bαc is unchanged, but makes it easier for the

algorithm to detect when coming in at 0.5 is slightly better on average than staying OUT),

and increasing av to 100, the algorithm performs almost identically to the theory:

OUT 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average counts: n=5, alpha=2.5, reps=1000, av=10
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OUT 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average counts: n=5, alpha=2.9, reps=1000, av=100
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5
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0
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5

2.
0

2.
5

3.
0

We next consider the case where there are n = 15 candidates, with win payoff α = 7.9.

In this case, Theorem 2 predicts that min(n, bαc+ 1) = 8 of the 15 candidates will enter at

0.5, with the other 7 candidates staying OUT. Now, if the reps and av settings are too small,

then the results do not match the theory too well: too many candidates staying OUT, and

(in some cases) some candidates come it at other positions like 0.4 and 0.6 instead of 0.5:
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However, if the value of av is sufficiently large, like 1,000 or even 10,000, then the simu-

lation results tend to be much closer to the theoretical predictions:

OUT 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average counts: n=15, alpha=7.9, reps=1000, av=1000
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We conclude from this that, with enough election repetitions and averaging, it is indeed

possible for the candidates to randomly tweak their actions and eventually converge to

equilibrium behaviour as predicted by Theorem 2. Further scenarios can be tested as desired

using the same C program.

19



Acknowledgements. I thank Martin J. Osborne for introducing me to this topic and for
many helpful discussions. This research was partially supported by NSERC of Canada.

References

C. Andrieu and G.O. Roberts (2009), The pseudo-marginal approach for efficient Monte
Carlo computations. Ann. Stat. 37(2), 697–725.

L. Bouton and G. Gratton (2015), Majority runoff elections: Strategic voting and Du-
verger’s hypothesis. Theoretical Economics 10, 283–314.

J.-P. de Vries (2015), Duverger’s (f)law: Counterproof to the Osborne Conjecture. MSc
thesis. Available at: https://thesis.eur.nl/pub/17645/

J.-P. de Vries, J.J.A. Kamphorst, M.J. Osborne, and J.S. Rosenthal (2016), On a con-
jecture about the sequential positioning of political candidates. Work in progress.

A. Downs (1957), An Economic Theory of Democracy. New York: Harper & Row.

M. Duverger (1951), Les Partis Politiques. Paris: Armand Colin.

B.C. Eaton and R.G. Lipsey (1975), The principle of minimum differentiation reconsid-
ered: Some new developments in the theory of spatial competition. Review of Ecnomic
Studies 42, 27–49.

H. Hotelling (1929), Stability in competition. Economics Journal 39, 41–57.

S. Hug (1995), Third parties in equilibrium. Public Choice 82, 159–180.

J. Nash (1951), Non-cooperative games. The Annals of Mathematics 52(2), 286–295.

M.J. Osborne (1993), Candidate positioning and entry in a political competition. Games
and Economic Behaviour 5, 133–151.

M.J. Osborne (1996), A conjecture about the subgame perfect equilibria of a model of se-
quential location. Available at: https://www.economics.utoronto.ca/osborne/research/conjecture.html

M.J. Osborne (2003), An Introduction to Game Theory. Oxford University Press.

W. Riker (1982), The two-party system and Duverger’s law: an essay on the history of
political science. American Political Science Review 76(4), 753-766.

J.S. Rosenthal (2016a), Stochastic Simulation of Sequential Game-Theory Voting Models.
Communications in Statistics: Simulation and Computation, to appear.

J.S. Rosenthal (2016b), Nash Equilibria for Voter Models with Randomly Perceived Po-
sitions. Submitted for publication.

J.A. Schlesinger and M.S. Schesinger (2006), Maurice Duverger and the study of political
parties. French Politics 4, 58–68.

A. Shaked (1982), Existence and computation of mixed strategy Nash equilibrium for
3-firms location problem. Journal of Industrial Economics 31, 93–96.

20


