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Abstract
One-shot coupling is a method of bounding the convergence rate between two copies of a Markov chain in total variation
distance, whichwas first introduced inRoberts andRosenthal (ProcessAppl 99:195–208, 2002) and generalized inMadras and
Sezer (Bernoulli 16:882–908, 2010). The method is divided into two parts: the contraction phase, when the chains converge
in expected distance and the coalescing phase, which occurs at the last iteration, when there is an attempt to couple. One-shot
coupling does not require the use of any exogenous variables like a drift function or a minorization constant. In this paper, we
summarize the one-shot coupling method into the One-Shot Coupling Theorem. We then apply the theorem to two families
of Markov chains: the random functional autoregressive process and the autoregressive conditional heteroscedastic process.
We provide multiple examples of how the theorem can be used on various models including ones in high dimensions. These
examples illustrate how the theorem’s conditions can be verified in a straightforward way. The one-shot coupling method
appears to generate tight geometric convergence rate bounds.

Keywords One-shot coupling · Convergence rate · Iterated random functions · Markov chain · Total variation distance ·
Gibbs sampler

1 Introduction

The study of Markov chain convergence rates focuses on
evaluating how fast a positive recurrent Markov chain con-
verges to its stationary distribution. On one hand, a great
deal of progress has been made in bounding the conver-
gence rate for Markov chains defined in discrete state spaces
(Saloff-Coste 1997; Rosenthal 1995a, 2016). On the other
hand, despite the major developments made in bounding
Markov chains in continuous state space, many applications
of continuous state space Markov chains do not have estab-
lished convergence rate bounds. For example, convergence
rate bounds applied to Markov chain Monte Carlo (MCMC)
models, which are useful for deciding the size of the burn-
in period (Hobert and Jones 2001; Geyer 2011), do not have
known upper bounds on their convergence rate (Geyer 2011).
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Users need to rely on ad-hoc convergence diagnostics (e.g.,
Gelman and Rubin 1992), which offer no guarantees.

Methods using the drift and minorization conditions (e.g.,
Rosenthal 1995b; Baxendale 2005), which guarantee geo-
metric ergodicity (Definition 2.5), are the most studied
techniques for bounding Markov chains in continuous state
space (Roberts and Rosenthal 2004; Hobert and Jones 2001).
The minorization condition is satisfied for a Markov chain
{Xn}n≥1 under the following circumstances: there exists a
small set K , a probability measure Q and a positive number
ε > 0 such that P(· | Xn = x) ≥ εQ(·) for x ∈ K . The drift
condition is satisfied if there exists a positive function V , and
constants α > 1 such that E[V (Xn+1) | Xn = x] ≤ V (x)/α
(Meyn and Tweedie 1993; Roberts and Rosenthal 2004).
Bounds generated using the drift and minorization condi-
tions have been applied to a wide array of problems such as
(Rosenthal 1996; Tan et al. 2013; Hobert and Jones 2001).

Despite the widespread use of bounds generated by the
drift and minorization conditions, there are drawbacks. First,
it can be a challenge to identify a small set K and drift func-
tion V (Madras and Sezer 2010). Second, it is shown in Qin
and Hobert (2020) based on results from Jerison (2016) that
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bounds that use the minorization condition do not scale well
in high dimensions.

Alternatively, methods for finding Markov chain con-
vergence rate bounds on the Wasserstein distance have
been shown to scale well in high dimensions (Durmus and
Moulines 2015; Qin and Hobert 2020), so bounding the total
variation distance by first bounding the Wasserstein distance
is a common technique used in the literature (Qin and Hobert
2020; Madras and Sezer 2010; Jin and Hobert 2021).

One-shot coupling, which bounds the Wasserstein dis-
tance as an intermediate step (Madras and Sezer 2010),
provides an upper bound on the convergence rate in total
variation distance of a Markov chain. This method does not
need to identify any exogenous sets or functions, like the drift
and minorization conditions. Further, the one-shot coupling
method has already been shown to scale well in certain high-
dimensional examples Roberts and Rosenthal (2002); Pillai
and Smith (2017) andwill be shown in this paper to scalewell
in high dimensions for the Bayesian regression Gibbs sam-
pler (Example 4.7) and the Bayesian location Gibbs sampler
(Example 4.13).

The one-shot coupling method described in Roberts and
Rosenthal (2002) works by first converging the expected dis-
tance between two copies of a Markov chain. At the last
iteration, the probability of coupling is evaluated when the
expected distance between the copies is small. This contrasts
with the drift and minorization technique, which attempts to
couple the two Markov chain copies every time they enter
some fixed small set K .

In this paper, we introduce the One-Shot Coupling The-
orem 3.1, which aims to summarize the method defined in
Roberts and Rosenthal (2002) and Madras and Sezer (2010)
for straightforward applications. The One-Shot Coupling
Theorem is used as the foundation for bounding the con-
vergence rate for all of the examples in this paper, which
can be partitioned into two families: the random functional
autoregressive process and the ARCH process. In Sect. 4, we
introduce the Sideways Theorem 4.2, which is new and is an
application of the One-Shot Coupling Theorem. We apply
it to various examples of random functional autoregressive
processes (Definition 4.1). In Sect. 5, we provide conver-
gence rate bounds using the One-Shot Coupling Theorem to
various ARCH processes (Definition 5.1).

Proofs for the theorems presented in this paper are
found in the appendix, Sect. 5.2. The code used to gen-
erate all of the tables and calculations can be found on
github.com/sixter/OneShotCoupling.

2 Background and notation

Let {Xn}n≥1 and {X ′
n}n≥1 be two copies of the Markov chain

over the state spaceX and defineL(Xn) to be the distribution

of the random variable Xn . We define π to be the stationary
distribution of the Markov chain.

2.1 Total variation distance

We are interested in measuring the distance between the dis-
tribution of two Markov chains. To measure this, we use the
total variation metric.

Definition 2.1 (Total variation distance) The total variation
distance between the laws of two random variables, X and
X ′, defined on the state space X is

‖L(X) − L(X ′)‖ = sup
A⊆X

|P(X ∈ A) − P(X ′ ∈ A)|

where L(X) represents the distribution of the random vari-
able X and A is a measurable set.

If the random variables, X , X ′ ∈ R have defined density
functions fX , fX ′ over the reference measure λ,

‖L(X) − L(X ′)‖ = 1

2

∫
R

| fX (x) − fX ′(x)|λ(dx) (1)

Total variation distance has natural probability interpre-
tations. It is the maximum difference in probabilities of an
event. It is the error in an expected bounded loss function
when a given measure is used as a proxy for another (Gibbs
and Su 2002). Finally, it can be seen as the percentage of
samples of L(X) which cannot be regarded as samples from
L(X ′) (Proposition 3(g) Roberts and Rosenthal 2004).

Historically, total variation distance was the common
metric for measuring Markov chain convergence rates
(Roberts and Rosenthal 2004; Meyn and Tweedie 1993;
Jones Jones2004;Hobert and Jones 2001), and hence, there is
a rich literature of attributes that can be deduced from finding
convergence rates in total variation (Jin and Tan 2020). For
example, mixing times in total variation distance can be used
to determine whether the Markov chain is asymptotically
uncorrelated (Theorem 2 of Jones (Jones2004)), uniformly
integrable (Theorem 3 of Jones (Jones2004)), whether the
central limit theorem (CLT) applies (Theorem 9 of Jones
(Jones2004) or Section 5.2 of Roberts andRosenthal (2004)),
or whether it is convergent based on the total variation mix-
ing times of another Markov chain (Theorem 8 of Dyer et al.
(2006)).

The following are properties of total variation, which will
be used in conjunction with the One-Shot Coupling Theorem
3.1 to establish upper bounds on the convergence rate for the
examples in this paper.

Proposition 2.2 states that the total variation between two
random variables is equal to the total variation of any invert-
ible transformof the same randomvariables. This proposition
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resembles Lemma 4.13 of Levin et al. (2017) and Lemma 3
of Madras and Sezer (2010).

Proposition 2.2 Let X , X ′ ∈ X be two randomvariables and
let g : X → Y be an invertible and measurable function.
Then,

‖L(g(X)) − L(g(X ′))‖ = ‖L(X) − L(X ′)‖ (2)

The proof is in Sect. 1.

In general, for a measurable (not necessarily invertible)
function g, g−1( f (B)) ⊂ B, so the third equality in the
proof becomes ≤ and

‖L(g(X)) − L(g(X ′))‖ ≤ ‖L(X) − L(X ′)‖

Proposition 2.3 states that the total variation distance
between two random variables is bounded above by the
expected value of the conditional random variable.

Proposition 2.3 Let X , X ′ be two random variables with cor-
responding σ -field B and Y ∈ Y be some related random
variable. Then

‖L(X) − L(X ′)‖ ≤ E
[‖L(X | Y ) − L(X ′ | Y )‖]

The proof is in Section A.

Proposition 2.4 states that the convergence rate of a
Markov chain inRd with independent coordinates is d times
themaximum coordinate-wise convergence rate. This propo-
sition is an application of inequality 1.2 of Reiss (1981).

Proposition 2.4 Let { 
Xn}n≥1 ∈ R
d be a Markov chain such

that each coordinate is independent of the other coordi-
nates, Xi,n ⊥⊥ X j,n, i �= j . Further suppose that for
two copies of the Markov chain { 
Xn}n≥1 and { 
X ′

n}n≥1,
max1≤i≤d‖L(Xi,n) − L(X ′

i,n)‖ ≤ Arn for some A ∈ R+
and r ∈ (0, 1). Then,

‖L( 
Xn) − L( 
X ′
n)‖ ≤ d Arn (3)

The proof is in Section A.

In this paper,we establish convergence bounds forMarkov
chains that are geometrically ergodic in total variation dis-
tance.

Definition 2.5 (Geometric ergodicity) Let {Xn}n≥1 be a
Markov chain with a stationary distribution π . The Markov
chain is geometrically ergodic if there exists a ρ < 1 and a
function M(x) < ∞, π -a.e. such that for X0 = x ,

‖L(Xn) − π‖ ≤ M(x)ρn (4)

The geometric rate of convergence for Xn is defined as ρ∗ =
inf{ρ : Eq. 4 holds}.

Proposition 4 of Qin and Hobert (2020) states that for any
sequence of drift and minorization conditions, the geomet-
ric convergence rate ρ established by the Rosenthal bound
(Theorem 12 of Rosenthal (1995b)) will increase at an expo-
nential rate for the autoregressive normal process in R

d as
the dimension d → ∞. This finding suggests that conver-
gence bounds that use the drift and minorization condition
do not scale well in dimension (see Lemma 3 and discussion
in Qin and Hobert (2020)). However, Proposition 2.4 shows
that since each coordinate in this example is independent, the
geometric convergence ρ rate is indeed invariant to dimen-
sion, regardless of the bounding approach. Thus, a drift and
minorization bound, including the Rosenthal bound, can eas-
ily be applied to the autoregressive normal process in R and
then extended to R

d using Proposition 2.4. To see Proposi-
tion 2.4 applied to the autoregressive normal process in R

d ,
see Example 4.21.

2.2 Wasserstein distance

Let X , X ′ ∈ R be two random variables equipped with
the Euclidean distance. The Wasserstein−1 distance can be
defined as follows,

W (L(X),L(X ′)) = inf{E[|Y − Y ′|] : L(X) = L(Y )

and L(X ′) = L(Y ′)}

In comparison with total variation distance, there is not
as much literature dedicated to Markov properties that can
be derived from the convergence inWasserstein distance (Jin
andTan 2020). However, this literature is growing. For exam-
ple, Jin and Tan provide sufficient conditions in Jin and Tan
(2020) for the CLT based on convergence inWasserstein dis-
tance (see Theorems 9 and 10).

2.3 Coupling

Total variation can also be defined in terms of the coupling
characterization (Gibbs and Su 2002),

‖L(X) − L(X ′)‖ = inf{P(Y �= Y ′) | L(X) = L(Y )

and L(X ′) �= L(Y ′)}

The total variation metric measures the distance between
two distributions, but is invariant to how these measures
are jointly distributed. For example, let X ∼ N (0, 1) and
X ′ ∼ N (1, 1) be two random variables. Regardless of
whether X and X ′ are highly dependent, for example if
X = X ′ + 1 or if X , X ′ are independent, their total vari-
ation distance would be the same. The Nummelin splitting
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technique makes use of this by constructing alternative ran-
dom variables, Y and Y ′, such that the marginal distributions
are the same L(X) = L(Y ), L(X ′) = L(Y ′), and the proba-
bility that they are unequal is minimized. This technique was
first shown in Nummelin (1978). See Rosenthal (1995a) or
Meyn and Tweedie (1993) for an explanation. Finally, note
that the theory on maximal coupling guarantees that there
exists alternative random variables Y ,Y ′ as defined above,
such that ‖L(X) − L(X ′)‖ = P(Y �= Y ′) Böttcher (2017).

Coupling techniques are widely used to calculate total
variation upper bounds on Markov chains (Rosenthal 2016,
1995b, a; Roberts andRosenthal 2004; Rosenthal 1996;Yang
andRosenthal 2019). Let {Xn}n≥1 and {X ′

n}n≥1 be two copies
of a Markov chain. If we want to use the coupling charac-
terization for finding an upper bound on the total variation
distance, we must also make sure that the faithful coupling
condition holds (see Section 2 of Rosenthal (1997)). That is,
for any measurable set A ∈ X ,

P(Xn+1 ∈ A : Xn = x and X ′
n = x ′)

= P(Xn+1 ∈ A : Xn = x)

P(X ′
n+1 ∈ A : Xn = x and X ′

n = x ′)
= P(X ′

n+1 ∈ A : X ′
n = x ′)

If the faithful coupling condition holds, then calculating the
probability that two chains are unequal at iteration n can
be interpreted as the probability that the two chains have
not yet coupled by iteration n. This is because once the two
Markov chains couple, they can be structured so that they
are equal forever and so P(Xn �= X ′

n) = P(T ≥ n) where
T = min{k : Xk = X ′

k} (Theorem 1 of Rosenthal (1997)). If
a minorization condition holds on theMarkov chain, then the
faithful coupling condition also holds. For one-shot coupling,
we do not need faithful coupling, because we only try to
couple the chains at the last iteration.

3 One-shot coupling

One-shot coupling is an alternative way of applying cou-
pling methods to bound the total variation of two copies of
a Markov chain. To apply one-shot coupling, we define a
Markov chain in terms of iterated random functions (Diaco-
nis and Freedman 1999). That is, define a family of random
functions {g
θ : 
θ ∈ 			} such that 
θn = {θ1,n, . . . , θd,n} is a
random vector and

Xn = g
θn (Xn−1)

The nth iteration of theMarkov chain can be written in terms
of X0 = x as follows,

Xn = (g
θn ◦ g
θn−1
. . . ◦ g
θ1)(x) = g
θn (g
θn−1

(. . . g
θ1(x) . . .))

Summarizing Section 3 of Roberts and Rosenthal (2002),
to find an upper bound on the total variation distance between
XN and X ′

N = g
θ ′
N
(X ′

N−1) we do the following.

1. Contraction phase: For n < N , set 
θn = 
θ ′
n so that the

two chains get ‘closer’ together.
2. Coalescing phase: For n = N , we set all but one coor-

dinate of 
θn and 
θ ′
n to equality and attempt to couple Xn

and X ′
n . That is, specify coordinate j ∈ {1, . . . , d} and

set θi,n = θ ′
i,n for all i �= j . Then we attempt to jointly

choose θ j,n and θ ′
j,n , such that

g(θ1,n ,...,θ j,n ,...,θd,n)(Xn−1) = g(θ1,n ,...,θ
′
j,n ,...,θd,n)

(X ′
n−1)

The method used in the contraction phase is also known
as the common random number method and is discussed
in detail in Section 2.3.1 of Jacob (2021). The contraction
phase can also be used to directly generate upper bounds
in Wasserstein distance (Jacob 2021; Qin and Hobert 2021;
Gibbs 2004) (it is also used to generate bounds on other types
of distances like Monge–Kantorovich or Prokhorov Jacob
(2021)).

The one-shot coupling method has been applied over a
variety of specific examples, namely, a nested gamma model
in Jovanovski andMadras (2013), an image restorationmodel
in Jovanovski (2014), and a random walk on the unit sphere
in Pillai and Smith (2017).

The contraction and coalescing phase described above
is how the one-shot coupling method was first defined in
Roberts and Rosenthal (2002). The following theorem sum-
marizes the above method and serves as a general outline for
bounding the total variation distance between two Markov
chains. The coalescing condition below does not specify
how the two chains will couple, unlike the method described
above.

Theorem 3.1 (One-Shot Coupling Theorem) Let {Xn}n≥1,

{X ′
n}n≥1 be two copies of a Markov chain such that Xn =

gθn (Xn−1) and X ′
n = gθ ′

n
(X ′

n−1), where (θn, θ
′
n)n≥1 are inde-

pendent random variables with respect to n and the marginal
distribution of θn, θ ′

n ∼ D, for some distributionD. Suppose
that the following two conditions hold for some non-negative
integer n0.

1. Contraction condition: There exists a D ∈ (0, 1) such
that for any n ≥ n0 when θn+1 = θ ′

n+1 ∼ D

E[|gθn+1(Xn) − gθn+1(X
′
n)|] ≤ DE[|Xn − X ′

n|]
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2. Coalescing condition: There exists a C > 0 such that for
any n ≥ n0

‖L(Xn) − L(X ′
n))‖ ≤ CE[|Xn−1 − X ′

n−1|]

Then the total variation distance between the two Markov
chains at iteration n ≥ n0 is

‖L(Xn) − L(X ′
n)‖ ≤ CDn−n0−1E[|Xn0 − X ′

n0 |]

Proof (Proof of the One-Shot Coupling Theorem 3.1) Fix
n ≥ n0. We are interested in finding an upper bound on
‖L(Xn) − L(X ′

n)‖. To do so, we first generate alternative
random variables, Yn,Y ′

n such that

1. for 0 ≤ m ≤ n0: Ym = Xm,Y ′
m = X ′

m
2. for n0 < m < n: θm = θ ′

m ∼ D and Ym =
gθm (Ym−1),Y ′

m = gθm (Y ′
m−1).

3. form = n: θm, θ ′
m ∼ Dwith an arbitrary joint distribution

and Ym = gθm (Ym−1),Y ′
m = gθ ′

m
(Y ′

m−1)

By construction, Ym
d= Xm and Y ′

m
d= X ′

m for 0 ≤ m ≤ n.
Nextwefind an upper bound on the total variation distance

between Yn and Y ′
n . By the contraction condition for n0 ≤

m < n, E[|gθm+1(Ym) − gθm+1(Y
′
m)|] ≤ DE[|Ym − Y ′

m |] and
so,

E[|Yn−1 − Y ′
n−1|] = E[|gθn−1(Yn−2) − gθn−1(Y

′
n−2)|]

≤ DE[|Yn−2 − Y ′
n−2|]

≤ Dn−n0−1E[|Yn0 − Y ′
n0 |]

By the coalescing condition,

‖L(Yn) − L(Y ′
n))‖ ≤ CE[|Yn−1 − Y ′

n−1|]
≤ CDn−n0−1E[|Yn0 − Y ′

n0 |]
= CDn−n0−1E[|Xn0 − X ′

n0 |]

Finally since Yn
d= Xn and Y ′

n
d= X ′

n ,

‖L(Xn) − L(X ′
n)‖ = ‖L(Yn) − L(Y ′

n)‖ ≤ CDn−n0−1

E[|Xn0 − X ′
n0 |]

��

IfL(Xn) has a density function with respect to Xn−1 = x ,
denoted f (x, z), then Theorem 3.1 can be proven using
Wasserstein distance as an intermediary step with the fol-
lowing lemma.

Lemma 3.2 (Theorem 12 of Madras and Sezer (2010)) If
1
2

∫
X | f (x, z) − f (x ′, z)|λ(dx) ≤ C |x − x ′| holds, then for

n ≥ 0

‖L(Xn) − L(X ′
n)‖ ≤ CW (L(Xn−1),L(X ′

n−1))

If the contraction condition holds, then for n ≥ n0,
W (L(Xn−1),L(X ′

n−1)) ≤ E[|Xn−1 − X ′
n−1|] ≤ Dn−n0−1

E[|Xn0 − X ′
n0 |] and the proof of Theorem 3.1 directly fol-

lows.
In most cases, n0 = 0. See the GARCH Example 5.12 for

an alternative case, n0 = 1.
In general, the contraction condition can be weakened.

Theorem 1.1 of Diaconis and Freedman (1999) provides suf-
ficient conditions to guarantee the existenceof D as defined in
the above theorem. The conditions in Theorem1 of Steinsaltz
(1999), which are called local contractivity and are weaker,
could also replace the contraction condition in the above the-
orem.

To bound the total variation between a Markov chain,
{Xn}n≥1, and the corresponding stationary distribution, π ,
we set X ′

0 ∼ π . This implies that X ′
n ∼ π and ‖L(Xn) −

π‖ ≤ CDn−n0−1EX∞∼π [|Xn0 − X∞|] where C, D, and n0
are satisfied according to the conditions above.

To find an upper bound on EX∞∼π [|Xn0 − X∞|], we use
the following Lemma 3.4, which uses a drift condition to
bound the expected distance between the stationary distribu-
tion of a Markov chain and an initial value.

Definition 3.3 (Drift condition) Let {Xn}n≥1 be a Markov
chain on X . A drift condition is satisfied if there exists a
function V : X → R and constants λ ∈ (0, 1) and b < ∞
such that E[V (Xn) | Xn−1] ≤ λV (Xn−1) + b.

Lemma 3.4 Let {Xn}n≥1 be a Markov chain such that a drift
condition 3.3 holds with V (x) = (x + h)2, h ∈ R. The
expected distance between X0 and X∞ ∼ π is bounded

above as follows, E[|X∞ − X0|] ≤
√

b
1−λ

+ E[|X0 + h|].

Proof E[|X∞ − X0|] ≤ E[|X∞ + h|] + E[|X0 + h|] ≤√
b

1−λ
+ E[|X0 + h|]. The last inequality holds by Lemma

3.5. ��

Lemma 3.5 (Proposition4.3 (i) ofMeynandTweedie (1993))
If the drift condition holds, then Eπ [V (X)] ≤ b

1−λ
. See Sect.

C.3 for a proof.

SeeNumerical Example 4.18 for an application of Lemma
3.4.
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4 Random-functional autoregressive
processes

The following section proposes the Sideways Theorem to
generate upper bounds on the total variation distance for
random-functional autoregressive processes.

Definition 4.1 (Random functional autoregressive processes)
The sequence {Xn}n≥1 is a random functional autoregressive
process if for g : R2 → R

Xn = g(θ1,n, Xn−1) + θ2,n

where (θ1,n, θ2,n) ∈ R
2 are random variables and (θ1,n, θ2,n)

⊥⊥ (θ1,m, θ2,m) when n �= m.

Theorem 4.2 (Sideways Theorem) Let {Xn}n≥1 ∈ R be a
random-functional autoregressive. Suppose that,

1. Contraction condition: There exists a D ∈ (0, 1) such
that for n ≥ 0,

E[|g(θ1,n+1, Xn) − g(θ1,n+1, X
′
n)|] ≤ DE[|Xn − X ′

n|]

2. Attributes of the conditional density θ2,n | θ1,n: The con-
ditional density of θ2,n | θ1,n

(a) is bounded above: There exists a K > 0 such that for
all (θ1,n, θ2,n) ∈ R

2, the conditional density function
of θ2,n is bounded above by K , fθ2,n (θ2,n | θ1,n) ≤ K.

(b) has at most M local extrema points that are at most
L > 0 distance apart: For any θ1,n, there are M local
maximas and minimas (local extrema points) within
the conditional density. The local extrema points are
at most L distance apart.

(c) is continuous for any θ1,n

Then an upper bound on the geometric rate of convergence
of the Markov chain is D and the total variation distance
between the two copies of the Markov chain, Xn, X ′

n, is
bounded above as follows,

‖L(Xn) − L(X ′
n)‖

≤
(
K (M + 1)

2
+ IM>1

L

)
Dn−1E[|X0 − X ′

0|] (5)

The attributes of the conditional density of θ2,n | θ1,n
serve to prove, by integrating along the y-axis or flipping the
density sideways, that the coalescing condition is satisfied. To
prove the Sideways Theorem, we show that the contraction
and coalescing conditions are satisfied and then apply the
One-Shot Coupling Theorem 3.1.

Lemma 4.3 (Coalescing condition) If the density of θ2,n |
θ1,n for any θ1,n is (1) bounded above, (2) has at most M

local extrema points that are at most L distance apart, and
(3) is continuous then for n ≥ 0,

‖L(Xn) − L(X ′
n)‖ ≤ CE[|Xn−1 − X ′

n−1|]

Where C = K (M+1)
2 + IM>1

L . See Sect. B.0.1 for a proof.

Proof of Theorem 4.2 If (θ1,n, θ2,n) = (θ ′
1,n, θ

′
2,n) then the

contraction condition defined in the One-Shot Coupling The-
orem 3.1 holds for D ∈ (0, 1) and n ≥ 0. The coalescing
condition holds by Lemma 4.3, which can be applied when
condition 2 is satisfied (attributes of the conditional density
of θ2,n | θ1,n). By the One-Shot Coupling Theorem 3.1, the
total variation distance between two copies of the process
can be bounded above using Eq. 5. ��

In Guibourg et al. (2012), it is shown that when the func-
tion g is deterministic (g is a function of Xn−1 only and
not θ1,n) and given the same assumptions on θ2,n , the upper
bound on the geometric rate of convergence is D (see Corol-
lary 8 andExample 9 ofGuibourg et al. (2012)). Thismatches
the results from our theorem.

Note that the Sideways Theorem 4.2 provides an upper
bound on total variation distance, but does not imply the
existence of a stationary distribution for the Markov chain.
To develop the intuition for this, first note that convergence
in total variation distance implies convergence in distribution
(Gibbs andSu2002). Suppose thatL(Xn),L(X ′

n)havedistri-
bution functions, Fn, F ′

n , then by Helly’s Selection Theorem
(see Lemma 11.1.8 of Rosenthal (2016)), a right continuous
function F exists such that Fn → F and F ′

n → F pointwise.
However, the function F may not necessarily be a distri-
bution function. This is an illustration of why a stationary
distribution may not exist.

A simple counter example would be the process Xn =
1
2 Xn−1+n+ Zn, Zn ∼ N (0, 1). It is clear how the Sideways
Theorem 4.2 could generate a geometric convergence bound
over two iterations of the process if E[X0 − X ′

0] < ∞, but
Xn, X ′

n → ∞ almost surely and so there is no stationary
distribution. See (Steinsaltz 1999) for more information on
sufficient conditions for stationarity.

4.1 An example of a nonlinear autoregressive
process

Example 4.4 (Nonlinear autoregressive process) This exam-
ple is discussed in Section 4 of Qin and Hobert (2021). Let
{Xn}n≥1 be a Markov chain such that

Xn+1 = 1

2
(Xn − sin Xn) + Zn+1

where {Zn}n≥1 ∼ N (0, 1) are independent and identi-
cally distributed (i.i.d.) random variables. In Qin and Hobert
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(2021), it is assumed that {Zn}n≥1 are i.i.d. random variables
with a mean of 0 and a variance of 1.

For g(x) = 1
2 (x − sin(x)), the derivative is g′(x) =

1
2 (1 − cos(x)) and so supx∈R g′(x) = 1. This cannot be
used. Instead, we can find a value for D in terms of the sec-
ond iteration. That is,

D2 = sup
x,y

E[|Xn+2 − X ′
n+2| | Xn = x, X ′

n = y]
|x − y|

Lemma 4.5 The value of D as defined above can be written
as

D2 = sup
x,y

√
2h(x, y)2 − 4 h(x,y) sin h(x,y) cos k(x,y)

e1/2
+ sin2 h(x, y)(1 + cos2 k(x,y)−sin2 k(x,y)

e2
)√

2|x − y|

where

h(x, y) = 1

4
(y − x + sin x − sin y)

k(x, y) = 1

4
(x + y − sin y − sin x)

The proof can be found in Sect. C.1.

Using simulation, we can deduce that D2 ≈ 0.8132 =
0.661,which closelymatches the geometric convergence rate
found in Qin and Hobert (2021) for the Wasserstein distance
of D = 0.814.

Using the Sideways Theorem 4.2 notation, K = 1√
2π

and
M = 1. An upper bound on the total variation distance is

‖L(Xn+1) − L(X ′
n+1)‖ ≤ 1√

2π
E[|X0 − X ′

0|]0.661�N/2�

Thus, if X0 = 1 and X ′
0 = 2, then after 20 iterations,

the total variation distance between the two processes will
be less than 0.01.

4.2 Random-coefficient autoregressive models

Corollary 4.6 Let {Xn}n≥1 ∈ R be a random-coefficient
autoregressive model. That is, Xn is of the following form

Xn = θ1,n Xn−1 + θ2,n

where (θ1,n, θ2,n) ⊥⊥ (θ1,m, θ2,m)when n �= m. If we replace
the contraction condition of the Sideways Theorem 4.2 with

1. E[|θ1,n|] < 1

Then Eq. 5 holds for D = E[|θ1,n|].

Proof If E[|θ1,n|] < 1, then set D = E[|θ1,n|] and so the
contraction condition in Theorem 4.2 holds,

E[|g(θ1,n+1, Xn) − g(θ1,n+1, X
′
n)|]

= E[|θ1,n+1Xn − θ1,n+1X
′
n|] ≤ DE[|Xn − X ′

n|]

Since all of the conditions in Theorem 4.2 are satisfied, Eq.
5 holds. ��

4.3 Bayesian regression Gibbs sampler

Example 4.7 (Bayesian regression Gibbs sampler) Suppose

we have the following observed data Y ∈ R
k and X ∈ R

k×p

where

Y | β, σ 2 ∼ Nk(Xβ, σ 2 Ik)

for unknown parameters β ∈ R
p, σ 2 ∈ R. Suppose we apply

the prior distributions on the unknown parameters,

• β | σ 2 ∼ Np(0p, σ 2

λ
Ip), where λ > 0 is known

• π(σ 2) ∝ 1/σ 2

The Bayesian regression Gibbs sampler is based on the con-
ditional posterior distributions of βn, σ

2
n and is defined as

follows.

• βn | σ 2
n−1, Y ∼ Np(β̃, σ 2

n−1A
−1)

• σ 2
n | βn, Y ∼ �−1

(
k+p
2 , 1

2

[
(βn − β̃)T A(βn − β̃) + C

])
.

�−1(α, β) represents the inverse gamma distribution.

where A = XT X + λIp is positive semi-definite, β̃ =
A−1XT Y , and C = Y T (Ik − X A−1XT )Y .

The following theorem gives an upper bound on the con-
vergence rate of the Bayesian regression Gibbs sampler.

Theorem 4.8 For two copies of the Bayesian regression
Gibbs sampler, (βn, σn) and (β ′

n, σ
′2
n ), defined in Example

4.7,

‖L(βn, σn) − L(β ′
n, σ

′2
n )‖

≤ K E[|σ 2
0 − σ

′2
0 |]

(
p

k + p − 2

)n−1

(6)

where K = (C/2)
k+2p
2

�(
k+2p
2 )

(
k+2p+2

C

) k+2p
2 +1

e− k+2p+2
2 .
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In Theorem 3.1 of Rajaratnam and Sparks (2015), it was
shown than for the equivalent example and some 0 < M1 ≤
M2, which are not specified,

M1

(
p

k + p − 2

)n

≤ ‖L(βn, σn) − π‖

≤ M2

(
p

k + p − 2

)n

This means that the bound derived from the Corollary 4.6
is sharp up to a constant. The primary difference between
Theorem 3.1 in Rajaratnam and Sparks (2015) and the bound
in Theorem 4.8 is that the latter provides explicit values for
the constant, M2 and as a result, numerical upper bounds can
be calculated.

Before proving Theorem 4.8, we present some lemmas.

Lemma 4.9 The variable σ 2
n can be written as a random-

coefficient autoregressive process, σ 2
n = XnYnσ 2

n−1 + Yn

where Xn ∼ �
( p
2 , C

2

)
and Yn ∼ �−1

(
k+p
2 , C

2

)
. And so,

‖L(βn, σ
2
n ) − L(β ′

n, σ
′2
n )‖ ≤ ‖L(σ 2

n ) − L(σ
′2
n )‖.

The proof can be found in C.2. �(α, β) represents the
gamma distribution.

Lemma 4.10 (Contraction condition) The Bayesian regres-
sion Gibbs sampler satisfies the contraction condition with

D =
(

p
k+p−2

)
. The proof can be found in C.2.

Lemma 4.11 (Attributes of the conditional density θ2,n |
θ1,n) For the Bayesian regression Gibbs sampler,
θ2,n | θ1,n has a continuous density, M = 1 and K =
(C/2)

k+2p
2

�(
k+2p
2 )

(
k+2p+2

C

) k+2p
2 +1

e− k+2p+2
2 . Theproof canbe found

in C.2.

Given the above lemmas, the proof of Theorem 4.8 is
straightforward when the Sideways Theorem is applied.

Proof of Theorem 4.8 Let n ≥ 0.

‖L(βn, σ
2
n ) − L(β ′

n, σ
′2
n )‖ ≤ ‖L(σ 2

n ) − L(σ
′2
n )‖

≤ K E[|σ 2
0 − σ

′2
0 |]

(
p

k + p − 2

)n−1

where K is defined in Lemma 4.11. Lemma 4.9 implies the
first inequality. The second inequality is a result of Corollary
4.6, which is satisfied because of the contraction condition
(Lemma 4.10) and the properties of the conditional density
θ2,n | θ1,n (Lemma 4.11). ��
Numerical Example 4.12 (Application of the Bayesian
regression Gibbs sampler) Suppose that we are interested
in evaluating the delay in getting a PhD (Y ), based on age,
age squared, sex and whether the student has a child at home

(X). Formore information on this problem, see van de Schoot
et al. (2013); Smeets et al. (2019). We want to find the upper
bound on the total variation distance for a Bayesian regres-
sion Gibbs sampler fitted to this model. In this case, there are
333 observed values (k = 333) and 4 covariates (p = 4).
Using the notation from Theorem 4.8, K = 0.0682. Further
suppose that we are interested in evaluating the upper bound
between two copies of the Markov chain Xn, X ′

n such that
σ 2
0 = 1 and σ

′2
0 = 1001. Then,

‖L(βn, σn) − L(β ′
n, σ

′
n)‖ ≤ 68.16454 (0.0119403)n−1 (7)

After three iterations, the total variation distance between
the two chains will be less than 0.01.

4.4 Bayesian locationmodel Gibbs sampler

Example 4.13 (Bayesian locationmodelGibbs sampler) Sup-
pose that we are given data points Y1, . . . ,YJ ∼ N (μ, τ−1)

where μ, τ−1 are unknown and J ≥ 3. Let μ, τ−1 have flat
priors onR andR+. TheGibbs algorithm is based on the con-
ditional posterior distributions of μ, τ−1, which are defined
as follows.

• μn+1 = ȳ + Zn+1/
√
Jτn

• τ−1
n+1 = S

2 + J
2 (ȳ−μn+1)

2

Gn+1

where Zn ∼ N (0, 1) and Gn ∼ �( J+2
2 , 1) are independent

and S = ∑n
i=1(yi − ȳ)2.

The following theorem gives an upper bound on the con-
vergence rate of the Bayesian location model Gibbs sampler.

Theorem 4.14 For two copies of the Bayesian locationmodel
Gibbs sampler Example 4.13,

‖L(μn, τ
−1
n ) − L(μ′

n, τ
′−1
n )‖

≤ K E[|τ−1
0 − τ

′−1
0 |]

(
1

J

)n−1

(8)

where K = (S/2)
J−1
2

�( J−1
2 )

(
S

J+1

)− J−3
2

e− J+1
2 .

This bound compares to the one derived in Section 6 of
Roberts and Rosenthal (2002) which states that,

‖L(μn, τ
−1
n ) − L(μ′

n, τ
′−1
n )‖

≤
(
J

2
+ 1

)
E[|τ−1

0 − τ
′−1
0 |]

(
1

J

)n

Both bounds return the same geometric rate of convergence.
However, themagnitude of constant K is difficult to compare
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against
( J
2 + 1

)
without knowing S. Note that the bound

derived from Corollary 4.6 is calculated in a systematic way.
Before proving Theorem 4.14, we present some lemmas.

Lemma 4.15 The variable τ−1
n can be written as a random-

coefficient autoregressive process, τ−1
n = XnYnτ

−1
n−1 + Yn,

where Xn ∼ �
( 1
2 ,

S
2

)
and Yn ∼ �−1

( J+2
2 , S

2

)
. And so,

‖L(μn, τ
−1
n ) − L(μ′

n, τ
′−1
n )‖ ≤ ‖L(τ−1

n ) − L(τ
′−1
n )‖. The

proof can be found in C.3.

Lemma 4.16 (Contraction condition) The Bayesian location
model Gibbs sampler satisfies the contraction condition with
D = 1

J . The proof can be found in C.3.

Lemma 4.17 (Attributes of the conditional density θ2,n |
θ1,n) For the Bayesian location model Gibbs sampler, θ2,n |
θ1,n has a continuous density, M = 1 and

K = (S/2)
J−1
2

�( J−1
2 )

(
S

J + 1

)− J−3
2

e− J+1
2 (9)

The proof can be found in C.3.

Given the above lemmas, the proof of Theorem 4.14 is
straightforward when the Sideways Theorem is applied.

Proof of Theorem 4.14 Note that

‖L(μn, τ
−1
n ) − L(μ′

n, τ
−1′
n )‖

≤ ‖L(τ−1
n ) − L(τ−1′

n )‖ ≤ K E[|τ−1
0 − τ−1′

0 |]
(
1

J

)n−1

where K is defined in Lemma 4.17. The first and second
inequality are a result of Lemma 4.15 and Corollary 4.6,
respectively. Corollary 4.6 is satisfied because of the con-
traction condition (Lemma 4.16) and the properties of the
conditional density θ2,n | θ1,n (Lemma 4.17). ��
Numerical Example 4.18 (Application of Bayesian location
model Gibbs sampler) Suppose that we are given the girth
in inches of a sample of trees (see the trees dataset in R),
Y1, . . . ,Y31 ∼ N (μ, τ−1), where μ, τ−1 are unknown. We
want to find the upper bound on the total variation distance
for the Gibbs sampler model applied to this problem. In this
case, the number of datapoints is 31 (J = 31) and using
the notation from Theorem 4.14, K = 13.74027. Further,
suppose that we are interested in evaluating the upper bound
betweenaMarkov chain (μn, τ

−1
n )with initial value τ−1

0 = 1
and the corresponding stationary Markov chain, which is
denoted as (μ∞, τ−1∞ ).

By Lemma 4.19, a drift function exists.

Lemma 4.19 For Numerical Example 4.18, the following
drift condition holds,

E[(τ−1
n + 0.5248723)2 | τ−1

n−1]

≤ 0.6583702(τ−1
n−1 + 0.5248723)2 + 106.3874

The proof can be found in C.3.

So by Lemma 3.4,

E[|τ−1∞ − τ−1
0 |] ≤ 18.12198 (10)

Combining this with Theorem 4.14,

‖L(μn, τ
−1
n ) − L(μ∞, τ−1∞ )‖

≤ 13.74027 × 18.12198

(
1

31

)n−1

=̇249

(
1

31

)n−1

After 4 iterations, the total variation distance between the
two chains will be less than 0.01. This bound compares to the
bound derived in Roberts and Rosenthal (2002), which, com-
binedwith Eq. 10, states that ‖L(μn, τ

−1
n )−L(μ∞, τ−1∞ )‖ ≤

299
( 1
31

)n
.

4.5 Autoregressive normal process

Example 4.20 (Autoregressive normal process in R) Let
{Xn}n≥1 ∈ R be an autoregressive normal process. Then
for i.i.d. Zn ∼ N (0, 1),

Xn = 1

2
Xn−1 +

√
3

4
Zn

In this case, θ1,n = 1
2 and θ2,n =

√
3
4 Zn . The density of θ2,n

is continuous and uni-modal and K =
√

2
3π . By Corollary

4.6,

‖L(Xn) − L(X ′
n)‖ ≤

√
2

3π
E[|X0 − X ′

0|]
(
1

2

)n−1

(11)

It is known that the geometric rate of convergence for
the autoregressive normal process is 1/2 (Qin and Hobert
2020), so once again the Sideways Theorem 4.2 generates
tight geometric convergence rates up to a constant.

When comparing the upper bound with the actual total
variation distance, note that if X0 = x0 is known, Xn ∼
N ( x02n , 1− 1

4n ). Thus, the total variation distance between two
copies of an autoregressive normal process Xn, X ′

n where the
initial values are known, X0 = x0 and X ′

0 = x ′
0, is as follows

(see Section 2 of Roberts and Rosenthal (2002)),

‖L(Xn) − L(X ′
n)‖ = 1 − 2


⎛
⎝− |x0 − x ′

0|
2n+1

√
1 − 1

4n

⎞
⎠

Figure 1 shows how the upper bound for the autoregres-
sive normal process using Eq. 11 compares to the actual total
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Fig. 1 This figure compares the
actual value of
‖L(Xn) − L(X ′

n)‖ against the
upper bound derived from the
Sideways Theorem 4.2, (Eq. 11)
when Xn, X ′

n are two copies of
the autoregressive normal
process (i.e.,

Xn = 1
2 Xn−1 +

√
3
4 Zn, Zn ∼

N (0, 1)) and x0 = 0, x ′
0 = 1

variation distance when x0 = 0 and x ′
0 = 1. The total vari-

ation is less than 0.01 after 6 iteration and the upper bound
on the total variation is less than 0.01 after 7 iterations.

In the following section, we extend the above example to
higher dimensions.

4.6 Processes inRd

Next we extend the autoregressive normal process as defined
above to Rd .

To do so, we apply Proposition 2.4 to an autoregressive
normal process inRd with independent coordinates, Example
4.21, and non-independent coordinates, Example 4.22.

Example 4.21 (Autoregressive normal process in R
d with

independent coordinates) Let { 
Xn}n≥1 ∈ R
d be an autore-

gressive normal process with independent coordinates. Then
for i.i.d. 
Zn ∼ N (
0, Id),


Xn = 1

2

Xn−1 +

√
3

4

Zn

And if i �= j , then Zi,n ⊥⊥ Z j,n . Further, Xi,n = 1
2 Xi,n−1 +√

3
4 Zi,n for i ∈ {1, . . . , d} and so by Example 4.20,

‖L(Xi,n) − L(X ′
i,n)‖ ≤

√
2

3π
E[|Xi,0 − X ′

i,0|]
(
1

2

)n−1

Since each coordinate is independent and bounded above by
the same value, Proposition 2.4 implies that

‖L( 
Xn) − L( 
X ′
n)‖ ≤ d

√
2

3π
sup

0≤i≤d
E[|Xi,0 − X ′

i,0|]
(
1

2

)n−1

Again, it is known that the geometric rate of convergence
for the autoregressive normal process in R

d is 1/2 (Qin and
Hobert, 2020).

Finally, to apply numbers to this example, suppose that

Xn, 
X ′

n ∈ R
100 and the initial values of this process are 
X0 =

(1, . . . , 1) and 
X ′
0 = (0, . . . , 0). The total variation distance

would be bounded above with ‖L( 
Xn+1) − L( 
X ′
n+1)‖ ≤

100
√

2
3π

( 1
2

)n
. This means that at 14 iterations the total vari-

ation distance would be less than 0.01.

The following example is a more general version of the
above, where Xn is a general autoregressive normal process
in Rd .

Example 4.22 (Autoregressive normal process in R
d ) The

random vector { 
Xn}n≥1 ∈ R
d is an autoregressive normal

process if for matrix A and random vector 
Wn ∼ N (
0, �2
d)

(�2
d is a positive semi-definite matrix)


Xn = A 
Xn−1 + 
Wn

Theorem 4.23 Suppose that A is a diagonalizable matrix.
Then for two copies, 
Xn, 
X ′

n ∈ R
d , of the autoregressive

normal process defined in Example 4.22,

‖L( 
Xn) − L( 
X ′
n)‖ ≤

√
d

2π
‖�−1

d ‖2‖P‖2‖P−1‖2
E[‖ 
X0 − 
X ′

0‖2] max
1≤i≤d

|λi |n (12)

where A = PDP−1 with D as the corresponding diagonal
matrix, λi is the i th eigenvalue of A and ‖·‖2 denotes the
Frobenius norm. The proof can be found in C.4, which uses
a modified version of the Sideways Theorem.
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Numerical Example 4.24 (Application of the autoregressive
normal process in R

d ) To apply numbers to this example,
suppose that 
Xn, 
X ′

n ∈ R
100 are two copies of the following

process 
Xn = A 
Xn + 
Zn, 
Zn ∼ N (0, A) where

A =

⎛
⎜⎜⎜⎝

1
2

1
8 0 · · · 0 0

1
8

1
2

1
8 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1
8

1
2

⎞
⎟⎟⎟⎠

and the initial values of this process are 
X0 = (1, . . . , 1)
and 
X ′

0 = (0, . . . , 0). The total variation distance would
be bounded above with ‖L( 
Xn) − L( 
X ′

n)‖ ≤ 98782.31
(0.7498791)n. This means that after 56 iterations the total
variation distance would be less than 0.01.

5 Autoregressive conditional
heteroscedastic processes

In this section, we look at bounding the total variation dis-
tance between two copies of an ARCH process.

Definition 5.1 (Autoregressive conditional heteroscedastic
(ARCH) process) The sequence {Xn}n≥1 is an ARCH pro-
cess if for g : R2 → R

Xn = g(θ1,n, Xn−1)θ2,n (13)

where (θ1,n, θ2,n) ∈ R
2 are random variables and (θ1,n, θ2,n)

⊥⊥ (θ1,m, θ2,m) when n �= m.

5.1 Application to the LARCHmodel

Example 5.2 (Linear ARCH process) Let {Xn}n≥1 ∈ R be a
linear ARCH process. Then for i.i.d. Zn and β0, β1 ∈ R

Xn = (β0 + β1Xn−1)Zn

See Section 7.3.3 of Doukhan (2018) for more details on this
model.

The following theorem provides an upper bound on the
convergence rate of two copies of a LARCH process.

Theorem 5.3 Let {Xn}n≥1 ∈ R and {X ′
n}n≥1 ∈ R be two

copies of the linear ARCH process. Suppose that,

• β0, β1 > 0 and Zn > 0 a.s.
• the density of log(Z0) is bounded above, has at most M

local maxima and minima, and is continuous.

Then, the process is geometrically ergodic if β1E[|Z0|] < 1
and an upper bound on the total variation distance between
the two processes is,

‖L(Xn) − L(X ′
n)‖ ≤ β1(M + 1)

2β0
sup
x

ex fZn (e
x )

Dn−1E[|X0 − X ′
0|] (14)

Where D = β1E[Z0]
Lemma 7.3.2 of Doukhan (2018) says that if β1E[|Z0|] < 1,
then a stationary distribution exists. This theorem makes an
even stronger assertion that under some additional assump-
tions, the process will also be geometrically ergodic with
geometric convergence rate D = β1E[|Z0|] < 1.

Before proving Theorem 5.3, we present some lemmas.

Lemma 5.4 (Contraction condition) The LARCH process
satisfies the contraction condition if D = β1E[Z0] < 1.
See Sect. D.1 for a proof.

Lemma 5.5 (Coalescing condition) Suppose that the density
of log(Z0) is bounded above, has at most M local maxima
and minima and is continuous. Then the LARCH process
satisfies the coalescing condition

‖L(Xn) − L(X ′
n)‖ ≤ CE[|Xn−1 − X ′

n−1|]

where n ≥ 1 and C = β1(M+1)
2β0

supx e
x fZn (e

x ), See Sect.
D.1 for a proof.

Note that the density of log(Z0) is flog(Z0)(x) = ex fZ0(e
x ).

Proof of Theorem 5.3 Suppose that the assumptions in Theo-
rem 5.3 are satisfied. Then the LARCH model satisfies the
contraction condition (Lemma 5.4) and the coalescing condi-
tion (Lemma 5.5). By the One-Shot Coupling Theorem 3.1,
Eq. 14 holds. ��
Numerical Example 5.6 We find the convergence rate of
Example 10.3.1 of Brockwell and Davis (2002), which is of
the form,

X2
n = (1 + 0.5X2

n−1)Z
2
n

where Z2
n ∼ χ2(1). Further let X0 = 0.1 and X ′

0 = 1.1.
The density of log(Z2

n) is flog(Z2
n)

(x) = (2π)−1/2e(x−ex )/2

and so, sup flog(Z2
n)

(x) = (2π)−1/2e(0−e0)/2 = 1√
2πe

. The

density of log(Z2
n) is also unimodal, so M = 1. By Theorem

5.3, an upper bound on the total variation distance is

‖L(Xn) − L(X ′
n)‖ ≤ 1√

8πe
0.5n−1 (15)
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After three iterations, the total variation distance is less than
0.01. In comparison, Fig. 2 shows how the bound compares
to a simulated estimate of the total variation distance for this
process.

5.2 Application to the asymmetric ARCHmodel

Example 5.7 (Asymmetric ARCH process) Let {Xn}nn ≥ 1
∈ R be an asymmetric ARCH process. Then for i.i.d. Zn

Xn =
√

(aXn−1 + b)2 + c2Zn

where a, b, c ∈ R. See Exercise 4.1 of Doukhan (2018) for
more details on this process.

The following theorem provides an upper bound on the
convergence rate of two copies of an asymmetric ARCH pro-
cess.

Theorem 5.8 Let {Xn}n≥1 ∈ R and {X ′
n}n≥1 ∈ R be two

copies of the asymmetric ARCH process defined in Example
5.7. Suppose further that the density of Zn is centred at 0 and
is monotonically decreasing around zero (i.e., π(x) ≥ π(y)
if |x | < |y|.). Then, the process is geometrically ergodic if
|a|E[|Z0|] < 1 and an upper bound on the total variation
distance between the two processes is

‖L(Xn) − L(X ′
n)‖ ≤ |a|

c
Dn−1E[|X0 − X ′

0|] (16)

where D = |a|E[|Z0|]
Exercise 4.1 part 1 of Doukhan (2018) states that the process
has a stationary solution if D = |a|E[|Z0|] < 1. Theorem
5.8 shows that under certain additional assumptions on Zn the
process will also be geometrically ergodic with a specified
quantitative bound.

Before proving Theorem 5.8, we present some lemmas.

Lemma 5.9 (Contraction condition) The asymmetric ARCH
process satisfies the contraction condition if D = |a|E[|Z0|]
< 1. See Sect. D.2 for a proof.

Lemma 5.10 (Coalescing condition) Suppose that the den-
sity of Zn is centred at 0 and is monotonically decreasing
around zero. Then, the asymmetric ARCH process satisfies
the coalescing condition

‖L(Xn) − L(X ′
n)‖ ≤ CE[|Xn−1 − X ′

n−1|]

where n ≥ 1 and C = |a|
c . See Sect. D.2 for a proof.

Proof of Theorem 5.8 Suppose that the assumptions in The-
orem 5.8 are satisfied. Then the asymmetric ARCH model
satisfies the contraction condition (Lemma 5.9) and the coa-
lescing condition (Lemma 5.10). By the One-Shot Coupling
Theorem 3.1, Eq. 16 holds. ��

Numerical Example 5.11 Suppose a = 0.5, b = 3, c = 5,
Zn ∼ N (0, 1) and X0 = 0, X ′

0 = 5. Then by Jensen’s
inequality, D = 0.5E[|Z0|] ≤ 0.5E[Z2

0]1/2 = 0.5 and so by
Theorem 5.8

‖L(Xn) − L(X ′
n)‖ ≤ 0.5

5
× 5 × 0.5n−1 = 0.5n (17)

So, by iteration n = 7, the total variation will be less than
0.01.

In comparison, Fig. 3 shows how the bound compares to
a simulated estimate of the total variation distance for this
process.

5.3 Application to the GARCH(1,1) model

Example 5.12 (GARCH(1,1) process) Let {Xn}n≥1 ∈ R be a
GARCH(1,1) process. Then for i.i.d. Zn

Xn = σn Zn

where for α, β, γ ∈ R,

σ 2
n = α2 + β2X2

n−1 + γ 2σ 2
n−1

See Section 7.3.6 of Doukhan (2018) for more details on this
model.

The following theorem provides an upper bound in total
variation distance between two copies of the GARCH(1,1)
process.

Theorem 5.13 Let {Xn}n≥1 ∈ R and {X ′
n}n≥1 ∈ R be two

copies of the GARCH process defined in Example 5.12.
Suppose that the density of Zn is centered at 0 and is
monotonically decreasing around zero. Then, the process is
geometrically ergodic if β2E[|Z2

0 |] + γ 2 < 1. Further sup-
pose that x0, x ′

0, σ
2
0 , andσ

′2
0 are known. Then an upper bound

on the total variation distance between the two processes is

‖L(Xn) − L(X ′
n)‖ ≤ Dn−1

α

√
β2|x20 − x

′2
0 | + γ 2|σ 2

0 − σ
′2
0 |
(18)

where D =
√

β2E[Z2
0] + γ 2

Before proving Theorem 5.13, we present some lemmas.

Lemma 5.14 (Contraction condition) The GARCH(1,1)
process satisfies the contraction condition if D =√

β2E[Z2
0] + γ 2 < 1 See Sect. D.3 for a proof.

Lemma 5.15 (Coalescing condition) Suppose that the den-
sity of Zn is centred at 0 and is monotonically decreasing
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Fig. 2 This figure compares a
simulated approximation of
‖L(X2

n) − L(X
′2
n )‖ against the

upper bound (Eq. 15). X2
n, X

′2
n

are two copies of the LARCH
process (i.e.,
X2
n = (1 + 0.5X2

n−1)Z
2
n and

Z2
n ∼ χ2(1)) and

X2
0 = 0.1, X

′2
0 = 1.1. To

simulate total variation, 10
million simulations were run
with bin length=0.01 for the
estimated density function

Fig. 3 This figure compares a
simulated approximation of
‖L(Xn) − L(X ′

n)‖ against the
upper bound (Eq. 17). Xn, X ′

n
are two copies of the
asymmetric process (i.e., Xn =√

(0.5Xn−1 + 3)2 + 52Zn, Zn ∼
N (0, 1)) and x0 = 0, x ′

0 = 5. To
simulate total variation, 10
million simulations were run
with bin length=0.01 for the
estimated density function

Fig. 4 This figure compares a
simulated approximation of
‖L(Xn) − L(X ′

n)‖ against the
upper bound (Eq. 19). Xn, X ′

n
are two copies of the asymmetric
process (i.e., Xn = σn Zn and
σ 2
n = 0.13000 + 0.1266X2

n−1 +
0.7922σ 2

n−1 and Zn ∼ N (0, 1))
and X0 = 0.1, σ0 = 0.01 and
X ′
0 = −0.1, σ ′

0 = 0.1. To
simulate total variation, 1
million simulations were run
with bin length=0.01 for the
estimated density function
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around zero. Then the GARCH(1,1) process satisfies the coa-
lescing condition,

‖L(Xn) − L(X ′
n)‖ ≤ D

αE[|Z0|] E[|Xn−1 − X ′
n−1|]

For n ≥ 2, D =
√

β2E[Z2
0] + γ 2. See Sect. D.3 for a proof.

Lemma 5.16 (Initial condition) Suppose that we know σ 2
0 ,

σ
′2
0 and X0, X ′

0, then

E[|X1 − X ′
1|] ≤

√
β2|X2

0 − X
′2
0 | + γ 2|σ 2

0 − σ
′2
0 |E[|Z0|]

See Sect. D.3 for a proof.

Proof of Theorem 5.13 Suppose that the assumptions in The-
orem 5.13 are satisfied and let n ≥ 2. Then the GARCH(1,1)
model satisfies the contraction condition (Lemma 5.14) and
the coalescing condition (Lemma 5.15). Thus, by the One-
Shot Coupling Theorem 3.1,

‖L(Xn) − L(X ′
n)‖ ≤ D

αE[|Z0|]D
n−2E[|X1 − X ′

1|]

Further, by Lemma 5.16 when the initial values σ 2
0 , σ

′2
0 , x0,

x ′
0 are known,

‖L(Xn) − L(X ′
n)‖ ≤ Dn−1

α

√
β2|X2

0 − X
′2
0 | + γ 2|σ 2

0 − σ
′2
0 |

where D =
√

β2E[Z2
0] + γ 2 ��

Numerical Example 5.17 In Example 10.3.2 of Brockwell
and Davis (2002), a GARCH(1,1) model is applied for the
daily returns of the Dow Jones Industrial Index between
between July 1997 and April 1999. Let

Xn = σn Zn

= excess daily return of the Dow Jones Industrial

Index at time n

The following is the fitted GARCH volatility estimates when
Zn ∼ N (0, 1),

σ 2
n = 0.13000 + 0.1266X2

n−1 + 0.7922σ 2
n−1

Suppose that we want to find the total variation of the fitted
process with varying initial values representing two market
states, X0 = 0.1, σ0 = 0.01 and X ′

0 = −0.1, σ ′
0 = 0.1 Then

by Theorem 5.13,

‖L(Xn) − L(X ′
n)‖ ≤

√
0.7922|0.012 − 0.12|

0.13
Dn−1

≈ 0.2456Dn−1 (19)

where D = √
0.1266 + 0.7922 = √

0.9188
By iteration 77, the total variation distance between the

two processes is less than 0.01. In comparison, Fig. 4 shows
how the bound compares to a simulated estimate of the total
variation distance for this process. The actual total variation
distance appears to be much smaller than the upper bound.
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AppendixA:Propositions related to theprop-
erties of total variation distance

Proof of Proposition 2.2 LetA be the sigma field of X and B
be the sigma field of Y .

First note that f −1(B) = { f −1(B) : B ∈ B} = A:

• f −1(B) ⊂ A: For B ∈ B, f −1(B) ⊂ A by measurabil-
ity.

• A ⊂ f −1(B): Let A ∈ A. Then f (A) ∈ B and
f −1( f (A)) ∈ f −1(B) by definition. By invertibility,
f −1( f (A)) = A and so A ∈ f −1(B).

The equality in Eq. 2 can then be proven as follows,

‖L( f (X)) − L( f (X ′))‖
= sup

B∈ f (B)

|P( f (X) ∈ B) − P( f (X ′) ∈ B)|

= sup
B∈ f (B)

|P(X ∈ f −1(B)) − P(X ′ ∈ f −1(B))|

= sup
A∈A

|P(X ∈ A) − P(X ′ ∈ A)| Since f −1(B) = A

= ‖L(X) − L(X ′)‖

��
Proof of Proposition 2.3

‖L(X) − L(X ′)‖ = sup
A∈B

|P(X ∈ A) − P(X ′ ∈ A)|

= sup
A∈B

|
∫
Y
P(X ∈ A | y) − P(X ′ ∈ A | y)μ(dy)|

≤ sup
A∈B

∫
Y

|P(X ∈ A | y) − P(X ′ ∈ A | y)|μ(dy)

by Jensen’s inequality
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≤
∫
Y
sup
A∈B

|P(X ∈ A | y) − P(X ′ ∈ A | y)|μ(dy)

≤ E
[‖L(X | Y ) − L(X ′ | Y )‖]

��
Proof of Proposition 2.4 To prove this, we use the concept of
maximal coupling over the coordinates. By maximal cou-
pling, for i ∈ {1, . . . , d} there exists random variables

XM
i,n, X

′M
i,n such that Xi,n

d= XM
i,n and X ′

i,n
d= X

′M
i,n and

‖L(Xi,n) − L(X ′
i,n)‖ = P(XM

i,n �= X
′M
i,n )

(see Proposition 3g of Roberts and Rosenthal (2004) or Sec-
tion 2 of Böttcher (2017)).

Further, there exists a uniqueproductmeasure such that for
any A1, . . . Ad ∈ B, P(∩d

i=1[XM
i,n ∈ Ai ]) = ∏d

i=1 P(XM
i,n ∈

Ai ) (Theorem 18.2 of Billingsley (2012)). For the unique
product measure, the following equality holds,

P(∩d
i=1X

M
i,n ∈ Ai ) =

d∏
i=1

P(XM
i,n ∈ Ai )

=
d∏

i=1

P(Xi,n ∈ Ai ) = P(∩d
i=1Xi,n ∈ Ai )

And so by uniqueness, for A ∈ Bd, P(XM
n ∈ A) = P(Xn ∈

A). By definition, this means that 
Xn
d= 
XM

n , which implies
that ( 
XM

n , 
X ′M
n ) ∈ C( 
Xn, 
X ′

n), the set of all couplings of

Xn, 
X ′

n .
We now use 
XM

n , 
X ′M
n to prove Eq. 3.

‖L( 
Xn) − L( 
X ′
n)‖

= inf

Y , 
Y ′∈C( 
Xn , 
X ′

n)

P( 
Y �= 
Y ′) by Eq. 2.4 of Böttcher (2017)

≤ P( 
XM
n �= 
X ′M

n )

= P(∪d
i=1[XM

i,n �= X
′M
i,n ])

≤
d∑

i=1

P(XM
i,n �= X

′M
i,n ) by subadditivity

≤ d Arn

��

Appendix B: Lemmas related to the Sideways
Theorem

The following are lemmas and corresponding proofs and
corollaries related to the Sideways Theorem (4.2).

B.0.1 Lemmas providing an upper bound on the
integral difference between a function and a
corresponding shift

The following lemmas are used in the proof of Lemma 4.3.

Lemma B.1 For any invertible, continuous function f : R →
R where the codomain is f (R) = (a, b) and � > 0,

∫
R

| f (x + �) − f (x)|dx = (b − a)�

Proof Since f is invertible and continuous, it is strictly
monotone (Lemma 3.8 if Hairer and Wanner (2008)).
Assume that f is strictly increasing. The integral can be writ-
ten as follows,

∫
R

| f (x + �) − f (x)|dx =
∫
R

f (x + �) − f (x)dx

=
∫
R

∫ b

a
I f (x+�)<y< f (x)dydx

=
∫
R

∫ b

a
I f −1(y)−�<x< f −1(y)dydx

=
∫ b

a

∫
R

I f −1(y)−�<x< f −1(y)dxdy by Fubini’s Theorem

=
∫ b

a
�dy

= (b − a)�

If f is strictly decreasing apply the transform h(x) =
a + b − f (x). The function h is a strictly increasing invert-
ible function with codomain (a, b) and so using the previous
result for increasing functions,

∫
R

| f (x + �) − f (x)|dx

=
∫
R

|h(x + �) − h(x)|dx = (b − a)�

��

Lemma B.2 Let f : R → R be a continuous function that
is invertible over the set (c, d) and is a constant function
over (c, d)C . Further suppose that the codomain is f (R) =
(a, b). Then for � > 0, we get that

∫
R

| f (x + �) − f (x)|dx = (b − a)�

Proof Assume that f is an increasing function and so f (c) =
a, f (d) = b and | f (x + �) − f (x)| = f (x + �) − f (x).
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Let 0 < ε < (c − d)/2 and define

gε(x) =
⎧⎨
⎩

( f (c + ε) − a)(1 − ex−c−ε) + a whenx ∈ (−∞, c + ε]
f (x) whenx ∈ (c + ε, d − ε]
( f (d − ε) − b)(1 − ed−ε−x ) + b whenx ∈ (d − ε,∞)

Note that gε(x) is continuous, invertible, an increasing func-
tion and the codomain is (a, b). By Lemma B.1 for each
ε > 0
∫
R

gε(x + �) − gε(x)dx = (b − a)�

Further, for all x ∈ R, limε→0 gε(x + �) − gε(x) =
f (x+�)− f (x) and so gε(x+�)−gε(x) converges point-
wise to f (x + �) − f (x). Next, for 0 < ε < (c − d)/2,
|gε(x +�)− gε(x)| < 2|b| and so the function gε(x +�)−
gε(x) is uniformly bounded. The above statements allow us
to apply the dominated convergence Theorem (Theorem 16.5
of Billingsley (2012)) and so

∫
R

f (x + �) − f (x)dx

= lim
ε→0

∫
R

gε(x + �) − gε(x)dx = (b − a)�

If f is strictly decreasing apply the transform h(x) =
a + b − f (x). The function h is a strictly increasing invert-
ible function with codomain (a, b) and so using the previous
result for increasing functions,

∫
R

| f (x + �) − f (x)|dx =
∫
R

|h(x + �)

− h(x)|dx = (b − a)�

��
Lemma B.3 Let f : R → R be a continuous function with
the following properties:

• the codomain is (0, K )

• (m1,m2, . . . ,mM ) are the local maxima and minima
points

• limx→∞ f (x) = 0 and limx→−∞ f (x) = 0

Further suppose that � < maxi=2,...,M {mi − mi−1}. Then
∫
R

| f (x − �) − f (x)|dx ≤ K (M + 1)�

Proof Since � < maxi=2,...,M {mi − mi−1}, we have that
m1 − � < m1 < m2 − � < . . . < mM . Let I1, . . . , IM be
the intersection points or the pointswhere f (Ii ) = f (Ii−�).

Show that mi − � < Ii < mi : Suppose that mi is a local
maximum point. Let g(x) = f (x + �). Within the interval

(mi −�,mi ), f ′(x) > 0 and g′(x) < 0 by assumption. This
implies that f (mi −�) < f (mi ) and g(mi −�) > g(mi ) by
theMean Value Theorem. Further since g(mi −�) = f (mi )

we have that g(mi − �) > f (mi − �) and g(mi ) < f (mi ).
Let h(x) = g(x) − f (x). Then h(mi − �) > 0 and

h(mi ) < 0 further h is a strictly decreasing function over
(mi − �,mi ) since g,− f are strictly decreasing functions
over the same interval. So by the intermediate value theorem,
there exists an ξ ∈ (mi − �,mi ) such that h(ξ) = 0 or
f (ξ) = g(ξ) = f (ξ +�). Further by injectivity, ξ is unique.
Let Ii = ξ . A similar proof can be given for when mi is a
local minimum.

Show that
∫ Ii+1
Ii

| f (x + �) − f (x)|dx ≤ K�: Note first
thatmi −� < Ii < mi < mi+1 −� < Ii+1 < mi+1 further
define

fi (x) =
⎧⎨
⎩

f (mi ) whenx ∈ (−∞,mi ]
f (x) whenx ∈ (mi ,mi+1]
f (mi+1) whenx ∈ (mi+1,∞)

Note that over the interval (mi ,mi+1], the function f is either
a strictly increasing or a strictly decreasing function.

∫ Ii+1

Ii
| f (x + �) − f (x)|dx

=
∫ mi

Ii
| f (x + �) − f (x)|dx

+
∫ mi+1−�

mi

| f (x + �) − f (x)|dx

+
∫ Ii+1

mi+1−�

| f (x + �) − f (x)|dx

≤
∫ mi

Ii
| f (x + �) − f (mi )|dx

+
∫ mi+1−�

mi

| f (x + �) − f (x)|dx

+
∫ Ii+1

mi+1−�

| f (mi+1) − f (x)|dx

=
∫ mi

Ii
| fi (x + �) − fi (x)|dx

+
∫ mi+1−�

mi

| fi (x + �) − fi (x)|dx

+
∫ Ii+1

mi+1−�

| fi (x + �) − fi (x)|dx

=
∫ Ii+1

Ii
| fi (x + �) − fi (x)|dx

≤
∫ mi+1

mi−�

| fi (x + �) − fi (x)|dx

=
∫
R

| fi (x + �) − fi (x)|dx
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= | f (mi ) − f (mi+1)|� ≤ K�

The last equality is a result of Lemma B.2.
By similar reasoning, it can be shown that

∫ I1
−∞| f (x + �) − f (x)|dx ≤ K�∫∞
IM

| f (x + �) − f (x)|dx ≤ K�

Finally note that the intersection points partitionR intoM+1
subsets and so
∫
R

| f (x − �) − f (x)|dx ≤ K (M + 1)�

��

Proof of Lemma 4.3

Lemma 4.3 represents the coalescing condition for the Side-
ways Theorem 4.2.

Proof of Lemma 4.3 Set θ1,n = θ ′
1,n . Define

� = g(θ1,n, Xn−1) − g(θ1,n, X
′
n−1)

Let fXn , fX ′
n
be the density functions for Xn, X ′

n , respec-
tively, and fθ2,n , fθ2,n+� be the density functions for θ2,n, θ2,n
+ �.

Suppose that �, Xn−1, X ′
n−1 ∈ R are known and so,

Xn = g(θ1,n, Xn−1) + θ2,n �⇒ θ2,n

= Xn − g(θ1,n, Xn−1)

X ′
n = g(θ1,n, X

′
n−1) + θ ′

2,n �⇒ θ ′
2,n − �

= X ′
n − g(θ1,n, Xn−1)

We know that θ2,n
d= θ ′

2,n and in general �, θ1,n are ran-
dom variables, so

‖L(Xn) − L(X ′
n)‖

≤ Eθ1,n ,�

[‖L(Xn | θ1,n,�) − L(X ′
n | θ1,n,�)‖]

by Proposition2.3 (B1)

= Eθ1,n ,�

[‖L(θ2,n | θ1,n) − L(θ2,n − � | θ1,n)‖
]

by Proposition 2.3 (B2)

By the assumptions in the theorem, the density of θ2,n is
continuous withM extrema points and has a codomain that is
in (0, K ). Let (m1,m2, . . . ,mM ) be the local extrema points
where mi < m j if i < j and L ≤ max2≤i≤M {mi − mi−1}
be the maximum distance between two local extrema points.
So, continuing from the inequality B1 and by the definition
of total variation, Eq. 1,

‖L(Xn) − L(X ′
n)‖

≤ Eθ1,n

[
E�

[
1

2

∫
R

| fθ2,n (x | θ1,n) − fθ2,n−�(x | θ1,n)|dx
]]

= Eθ1,n

[
E�

[
1

2

∫
R

| fθ2,n (x | θ1,n) − fθ2,n (x + � | θ1,n)|dx
]]

= Eθ1,n

[
E�

[
1

2

∫
R

| fθ2,n (x | θ1,n) − fθ2,n (x + � | θ1,n)|dx I�<L

]]

+ Eθ1,n

[
E�

[
1

2

∫
R

| fθ2,n (x | θ1,n) − fθ2,n (x + � | θ1,n)|dx I�>L

]]

≤ 1

2
Eθ1,n [E� [K (M + 1)|�|]] + P�(| � |> L)

≤ K (M + 1)

2
E� [|�|] + E�[| � |]

L

The second last inequality is a result of Lemma B.3. The
coalescing condition is thus satisfied as follows with C =
K (M+1)

2 + IM>1
L ,

‖L(Xn+1) − L(X ′
n+1)‖

≤ CE[|g(θ1,n, Xn−1) − g(θ1,n, X
′
n−1)|]

= CE[|g(θ1,n, Xn−1) + θ2,n

− (g(θ1,n, X
′
n−1) + θ2,n)|]

= CE[|Xn − X ′
n|]

��

Appendix C: Lemmas for random-functional
autoregressive process examples

C.1 Proof of Lemma 4.5

Proof of Lemma 4.5 First note that

E[|Xn+2 − X ′
n+2| | Xn = x, X ′

n = y]
= E

[∣∣∣∣g
(
1

2
(x − sin x) + Zn

)
− g

(
1

2
(y − sin y) + Zn

) ∣∣∣∣
]

= 1

2
E

[∣∣∣∣12 (x − y + sin y − sin x)

+ sin

(
1

2
(y − sin y) + Zn

)
− sin

(
1

2
(x − sin x) + Zn

) ∣∣∣∣
]

= 1

2
E [|g(x, y) + G(x, y)|]

where g(x, y) = 1
2 (x − y + sin y − sin x) and G(x, y) =

sin
( 1
2 (y − sin y) + Zn

) − sin
( 1
2 (x − sin x) + Zn

)
. By

trigonometric identities 1, for k(x, y) = x+y−sin y−sin x
4 and

h(x, y) = y−x+sin x−sin y
4 .

G(x, y) = 2 cos

(
x + y − sin y − sin x

4
+ Zn

)

1 The trigonometric identities used are 2 cosμ sin υ = sin(μ + υ) −
sin(μ−υ) and cos(μ+υ) = cosμ cos υ + sinμ sin υ whereμ, υ ∈ R
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sin

(
y − x + sin x − sin y

4

)

= 2 cos (k(x, y) + Zn) sin h(x, y)

= 2 sin h(x, y) (cos Zn cos k(x, y)

+ sin Zn sin k(x, y))

And so,

E[|Xn+2 − X ′
n+2| | Xn = x, X ′

n = y]
= 1

2
E [|g(x, y) + 2 sin h(x, y) (cos Zn cos k(x, y) + sin Zn sin k(x, y))|]

≤ 1

2

√
E
[
(g(x, y) + 2 sin h(x, y) (cos Zn cos k(x, y) + sin Zn sin k(x, y)))2

]

= 1

2

√
g(x, y)2 + 4

g(x, y) sin h(x, y) cos k(x, y)

e1/2
+ 2 sin2 h(x, y)

(
1 + cos2 k(x, y) − sin2 k(x, y)

e2

)

= 1√
2

√
2h(x, y)2 − 4

h(x, y) sin h(x, y) cos k(x, y)

e1/2
+ sin2 h(x, y)

(
1 + cos2 k(x, y) − sin2 k(x, y)

e2

)

��

C.2 Proof of lemmas used in Theorem 4.8

To prove the first part of this theorem, we apply the de-
initialization technique which shows how the convergence
rate of a Markov chain can be bounded above by the con-
vergence rate of a more simpler Markov chain that includes
sufficient information on the Markov chain of interest. The
concept of de-initialization and a proposition that bounds
total variation is provided below.

Definition C.1 (De-initialization) Let {Xn}n≥1 be a Markov
chain. A Markov chain {Yn}n≥1 is a de-initialization of
{Xn}n≥1 if for each n ≥ 1

L(Xn | X0,Yn) = L(Xn | Yn)

Proposition C.2 (Theorem1ofRoberts andRosenthal (2001))
Let {Yn}n≥1 be a de-initialization of {Xn}n≥1 then for any two
initial distributions X0 ∼ μ and X ′

0 ∼ μ′,

‖L(Xn) − L(X ′
n)‖ ≤ ‖L(Yn) − L(Y ′

n)‖

Proof of Lemma 4.9 Note that βn = β̃ + σn−1Zn, Zn ∼
Np(0, A−1) can be written as a random function of σ 2

n .
Substituting βn , σ 2

n can then be written as a random func-
tion of its previous value for independent Z2

n ∼ χ2(p) and
Gn ∼ �(

k+p
2 , 1),

σ 2
n = Z2

n

C

C

2Gn
σ 2
n−1 + C

2Gn

Let Xn = Z2
n
C , Yn = C

2Gn
. We can rewrite σ 2

n =
XnYnσ 2

n−1 + Yn where Xn ∼ �
( p
2 , C

2

)
and Yn ∼ �−1(

k+p
2 , C

2

)
. Using the notation from the Sideways Theorem

4.2 θ1,n = XnYn and θ2,n = Yn .
Since βn can be written as a random function of σ 2

n ,

L(βn, σ
2
n | β0, σ

2
0 , σ 2

n ) = L(βn, σ
2
n | σ 2

n )

and so σ 2
n is a de-initialization of (βn, σ

2
n ). By Proposition

C.2,

‖L(βn, σ
2
n ) − L(β ′

n, σ
′2
n )‖ ≤ ‖L(σ 2

n ) − L(σ
′2
n )‖

We are thus interested in evaluating the convergence rate of
σ 2
n to bound the convergence rate of (βn, σ

2
n ).

To interpret this in another way, if σ 2
n couples then the

distribution of βn is the same for both iterations, so it is auto-
matically coupled. An alternative proof can be made using
the results from Liu et al. (1994). ��

Proof of Lemma 4.10 By Lemma 4.9, θ1,n = XnYn and so,

K = E[|θ1,n|] = E[XnYn] = E[Xn]E[Yn]
= p

C

C

k + p − 2
= p

k + p − 2 ��

Proof of Lemma 4.11 Calculate the conditional density
θ2,n | θ1,n We remove the subscript n on the random vari-
ables. Let X ,Y be as described in Lemma 4.9. Since the
random variables are independent, the joint density is the
product of the densities.
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fX ,Y (x, y) = C/2

�(p/2)
x p/2−1exC/2

C/2

�((k + p)/2)
y−(k+p)/2−1e−C/2

y (C3)

Then (θ1, θ2) = (XY ,Y ) is a transformation with the Jaco-
bian |J | = θ−1

2 and the density written as follows,

fθ1,θ2(θ1, θ2) = fX ,Y

(
θ1

θ2
, θ2

)
θ−1
2

= C/2

�(p/2)

(
θ1

θ2

)p/2−1

e
− θ1

θ2
C/2

C/2

�((k + p)/2)
θ

−(k+p)/2−1
2 e

−C/2
θ2 θ−1

2

Next fθ2|θ1(θ2 | θ1) is proportional to fθ1,θ2(θ1, θ2) and so
we can derive the conditional density of θ2 as follows,

fθ2|θ1(θ2 | θ1) ∝ fθ1,θ2(θ1, θ2) (C4)

∝ θ
1−p/2
2 e

− 1
θ2

θ1C/2
θ

−(k+p)/2−1
2 e

− 1
θ2
C/2

θ−1
2
(C5)

= θ
−(p/2+(k+p)/2)−1
2 e

− 1
θ2

(θ1+1)C/2
(C6)

This is proportional to an inverse gamma distribution and

so, θ2 | θ1 ∼ �−1
(
k+2p
2 , (θ1 + 1)C/2

)
. Since the condi-

tional density is an inverse gamma distribution, the number
of modes is M = 1 and the density function is continuous.

Calculate the maximum value of fθ2|θ1(θ2 | θ1) : Fig.
5 shows how the maximum value of the density increases
as the shape, (θ1 + 1)C/2 decreases when the rate, k+2p

2 is
fixed. It can also be shown from equation C4 that the density
function of fθ2|θ1(θ2 | θ1) is maximized when θ1 = 0 since
the normalizing constant will be the largest. This means that
fθ2|θ1(θ2 | θ1) reaches its maximum height when θ1 = 0
and so we find the value of fθ2|θ1(θ2 | θ1) evaluated at θ2 =

C
k+2p+2 , the mode (Section 5.3 of Hoff (2009)).

K = fθ2|θ1
(

C

k + 2p + 2
| θ1 = 0

)

= (C/2)
k+2p
2

�(
k+2p
2 )

y− k+2p
2 −1e−C/2

y |y= C
k+2p+2

= (C/2)
k+2p
2

�(
k+2p
2 )

(
C

k + 2p + 2

)− k+2p
2 −1

e− k+2p+2
2

= (C/2)
k+2p
2

�(
k+2p
2 )

(
k + 2p + 2

C

) k+2p
2 +1

e− k+2p+2
2

And so,

K = (C/2)
k+2p
2

�(
k+2p
2 )

(
k + 2p + 2

C

) k+2p
2 +1

e− k+2p+2
2 (C7)

��

C.3 Proof of lemmas used in Theorem 4.14

Proof of Lemma 4.15 The iteration τ−1
n+1 can be written as

a function of its previous value, τ−1
n since μn+1 = ȳ +

Zn+1/
√
Jτn .

τ−1
n+1 = Z2

n+1

S

S

2Gn+1
τ−1
n + S

2Gn+1
(C8)

Next we can rewrite, τ−1
n = XnYnτ

−1
n−1 + Yn where Xn =

Z2
t+1
S ∼ �

( 1
2 ,

S
2

)
and Yn = S

2Gt+1
∼ �−1

( J+2
2 , S

2

)
.

Since (μn, τ
−1
n ) can be written as a random function of

τ−1
n ,

L(μn, τ
−1
n | μ0, τ

−1
0 , τ−1

n ) = L(μn, τ
−1
n | τ−1

n )

and τ−1
n is a de-initialization of (μn, τ

−1
n ). Further, by Propo-

sition C.2,

‖L(μn, τ
−1
n ) − L(μ′

n, τ
′−1
n )‖ ≤ ‖L(τ−1

n ) − L(τ
′−1
n )‖

To interpret this in another way, if τn couples then the
distribution ofμn is the same for both iterations, so it is auto-
matically coupled. An alternative proof can be made using
the results from Liu et al. (1994). ��
Proof of Lemma 4.16 By Lemma 4.15, θ1,n = XnYn and so
by Corollary 4.6

D = E[|θ1,n|] = E[XnYn] = E[Xn]E[Yn] = 1

S

S

J
= 1

J

��
Proof of Lemma 4.17 To find M, K and show that the con-
ditional density is continuous, we (a) show that θ2 | θ1 ∼
�−1

( J−1
2 , (θ1 + 1)S/2

)
, which directly implies that the con-

ditional distribution is continuous and M = 1 and we (b) we
find the value of K .

(a) Calculate the conditional density θ2,n | θ1,n For sim-
plicity, we remove the subscript n on the random variables.
Let X ,Y be as described in Lemma 4.15. Since the random
variables are independent, the joint density is the product of
the densities.

fX ,Y (x, y) = S/2

�(1/2)
x1/2−1exS/2 S/2

�((J + 2)/2)

y−(J+2)/2−1e− S/2
y (C9)
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Fig. 5 Inverse gamma density
when α = 100 and
β = 1, 10, 100

Then (θ1, θ2) = (XY ,Y ) is a transformation with the Jaco-
bian |J | = θ−1

2 and the density written as follows,

fθ1,θ2(θ1, θ2) = fX ,Y

(
θ1

θ2
, θ2

)
θ−1
2

= S/2

�(1/2)

(
θ1

θ2

)1/2−1

e
− θ1

θ2
S/2

S/2

�((J + 2)/2)
θ

−(J+2)/2−1
2 e

− S/2
θ2 θ−1

2

Next fθ2|θ1(θ2 | θ1) is proportional to fθ1,θ2(θ1, θ2) and so
we can derive the conditional density of θ2 as follows,

fθ2|θ1(θ2 | θ1) ∝ fθ1,θ2(θ1, θ2) (C10)

∝ θ
1−1/2
2 e

− 1
θ2

θ1S/2
θ

−(J+2)/2−1
2 e

− 1
θ2

S/2
θ−1
2
(C11)

= θ
−(1/2+(J+2)/2)−1
2 e

− 1
θ2

(θ1+1)S/2
(C12)

= θ
−(J−1)/2−1
2 e

− 1
θ2

(θ1+1)S/2
(C13)

This is proportional to an inverse gamma distribution and so,
θ2 | θ1 ∼ �−1

( J−1
2 , (θ1 + 1)S/2

)
.We know that the inverse

gamma distribution is continuous and unimodal, so M = 1.
(b) Calculate the maximum value of fθ2|θ1(θ2 | θ1) :

Similar to Fig. 5 of Example 4.7, fθ2|θ1(θ2 | θ1) reaches
its maximum height when θ1 = 0. It can also be shown
from equation C10 that the density function of fθ2|θ1(θ2 | θ1)

is maximized when θ1 = 0 since the normalizing constant
will be the largest. So the largest value of fθ2|θ1(θ2 | θ1)

will occur when θ1 = 0. To find the maximum conditional
distribution,wefind the value of fθ2|θ1(θ2 | θ1 = 0) evaluated

at θ2 = S
J+1 , the mode (see Section 5.3 of Hoff (2009)).

K = fθ2|θ1
(

S

J + 1
| θ1 = 0

)

= (S/2)
J−1
2

�( J−1
2 )

y− J−1
2 −1e− S/2

y |y= S
J+1

= (S/2)
J−1
2

�( J−1
2 )

(
S

J + 1

)− J−3
2

e− J+1
2

And so,

K = (S/2)
J−1
2

�( J−1
2 )

(
S

J + 1

)− J−3
2

e− J+1
2 (C14)

��
Proof of Lemma 3.5 By the property of stationary distribu-
tion, if σ 2

n−1 ∼ π then σ 2
n ∼ π and so the lemma follows

from the following.

Eσ 2
n ∼π [V (σ 2

n )] = Eσ 2
n−1∼π [E[V (σ 2

n ) | σ 2
n−1]]

≤ Eσ 2
n−1∼π [λV (σ 2

n−1) + b]
= λEσ 2

n ∼π [V (σ 2
n )] + b ��

Proof of 4.19 Let λ = 0.6583702, h = −0.5248723 and
b = 106.3874, then

E[V (σ 2
n ) | σ 2

n−1]
= E[(σ 2

n − h)2 | σ 2
n−1]

= E[(σ 2
n )2 − 2hσ 2

n + h2 | σ 2
n−1]

= E[(XnYnσ
2
n−1 + Yn)

2 − 2h(XnYnσ
2
n−1 + Yn) + h2 | σ 2

n−1]
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= E[Y 2
n ](E[X2

n](σ 2
n−1)

2 + 2E[Xn]σ 2
n−1 + 1)

− 2h(E[Xn]E[Yn]σ 2
n−1 + E[Yn]) + h2

= E[Y 2
n ]E[X2

n](σ 2
n−1)

2 + 2E[Xn]E[Y 2
n ]σ 2

n−1

+ E[Y 2
n ] − 2hE[Xn]E[Yn]σ 2

n−1 − 2hE[Yn] + h2

= E[Y 2
n ]E[X2

n](σ 2
n−1)

2 + 2E[Xn](E[Y 2
n ]

− hE[Yn])σ 2
n−1 + E[Y 2

n ] − 2hE[Yn] + h2

= 0.6583702(σ 2
n−1)

2 + 0.6911206σ 2
n−1 + 107.3691

= λ(σ 2
n−1)

2 + 2λhσ 2
n−1 + λh2 + b

= λ(σ 2
n−1 + h)2 + b ��

C.4 Proof of Theorem 4.23

Proof of Theorem 4.23 This example uses a modified version
of the Sideways Theorem 4.2 to find an upper bound on the
convergence rate. We will also use Proposition 2.2, which
states that the total variation between two random variables
is equal to the total variation of any invertible transformation
of the same two random variables.

Let 
Xn, 
X ′
n ∈ R

2 be two copies of the autoregressive
normal process as defined in Example 4.22. Then for 
Zn ∼
N (
0, Id),


Xn = A 
Xn−1 + �d 
Zn 
X ′
n = A 
X ′

n−1 + �d 
Z ′
n

We apply the one-shot coupling method to bound the total
variation distance. For n < N set 
Zn = 
Z ′

n .
Suppose X0, X ′

0 are known and define

� = ‖�−1
d An( 
X0 − 
X ′

0)‖2

Decompose A = PDP−1 with D as the corresponding diag-
onal matrix, λi is the i th eigenvalue of A and ‖·‖2 denotes
the Frobenius norm. Then � is bounded above as follows,

� = ‖�−1
d An( 
X0 − 
X ′

0)‖2
= ‖�−1

d PDn P−1( 
X0 − 
X ′
0)‖2

≤ ‖�−1
d ‖2 · ‖P|2‖Dn‖2‖P−1‖2‖ 
X0 − 
X ′

0‖2
by Lemma 1.2.7 ofAggarwal (2020)

≤ ‖�−1
d ‖2 · ‖P‖2‖P−1‖2‖ 
X0 − 
X ′

0‖2
√√√√ d∑

i=1

| λi |2n

≤ ‖�−1
d ‖2 · ‖P‖2‖P−1‖2‖ 
X0 − 
X ′

0‖2
√
d max
1≤i≤d

| λi |n

For now assume that X0, X ′
0 are known and note that �−1

d
is an invertible transform. We bound the total variation dis-
tance as follows by applying two invertible transforms on the
Markov chain and using the fact that 
Zm = 
Z ′

m,m < N .

‖L( 
XN ) − L( 
X ′
N )‖

≤ E{ 
Zm }m<N

[
‖L( 
XN ) − L( 
X ′

N )‖
]

by Proposition 2.3

= E{ 
Zm }m<N

[
‖L(�−1

d

XN ) − L(�−1

d

X ′
N )‖

]

by Proposition 2.2

= E{ 
Zm }m<N

[
‖L(�−1

d A 
XN−1 + 
ZN ) − L(�−1
d A 
X ′

N−1 + 
Z ′
N )‖

]

= E{ 
Zm }m<N

[
‖L(�−1

d AN 
X0 + 
ZN ) − L(�−1
d AN 
X ′

0 + 
Z ′
N )‖

]

by Proposition 2.2

= E{ 
Zm }m<N

[
‖L( 
ZN + �−1

d AN ( 
X0 − 
X ′
0)) − L( 
Z ′

N )‖
]

= ‖L( 
ZN + �−1
d AN ( 
X0 − 
X ′

0)) − L( 
Z ′
N )‖

There exists a rotation matrix R ∈ R
d×d such that

R[�−1
d A( 
Xn − 
X ′

n)] = (‖�−1
d A( 
Xn − 
X ′

n)‖2, 0, . . . 0)
= (�, 0, . . . 0)

Aggarwal (2020). By properties of rotation, R is orthogonal,
so RT = R−1 and RZn ∼ N (0, RId RT ) = N (0, Id) ∼ Zn .

In otherwords, RZn
d= Zn

d= Z ′
n . Thus, continuing the above

equality,

‖L( 
Xn) − L( 
X ′
n)‖

≤ ‖L( 
Zn + �−1
d An( 
X0 − 
X ′

0)) − L( 
Z ′
n)‖

= ‖L(R[ 
Zn + �−1
d A( 
Xn − 
X ′

n)]) − L(R 
Z ′
n)‖ by Proposition 2.2

= ‖L( 
Zn + (�, 0, . . . 0)) − L( 
Zn)‖

Next, suppose that X0, X ′
0 are unknown. Then, the

inequality stated in Eq. 12 is shown as follows,

‖L( 
Xn) − L( 
X ′
n)‖

≤ E�

[
‖L( 
Zn + (�, 0, . . . 0)) − L( 
Zn)‖

]
by Proposition 2.3

= E�

[
1

2

∫
Rd

e−∑d
i=2 y

2
i /2

(2π)d/2

∣∣∣e−y21/2 − e−(y1−�)2/2
∣∣∣ d 
y

]

= E�

[
1

2

∫
R

∣∣∣∣ 1√
2π

e−y21/2 − 1√
2π

e−(y1−�)2/2d

∣∣∣∣ 
y
]

= E�[‖L(Z1,n + �) − L(Z1,n)‖]
≤ 1√

2π
E[�] by Lemma B.3

≤
√

d

2π
‖�−1

d ‖2 · ‖P‖2‖P−1‖2E[‖ 
X0 − 
X ′
0‖2] max

1≤i≤d
| λi |n

��
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AppendixD: Lemmas forARCHprocess exam-
ples

D.1 Proof of lemmas used in Theorem 5.3

Proof of Lemma 5.4 Let {Xn}n≥1 ∈ R and {X ′
n}n≥1 ∈ R be

two copies of the LARCH process. For fixed n ≥ 1, let
Zn = Z ′

n and so,

E[|Xn − X ′
n |] = E[|(β0 + β1Xn−1)Zn − (β0 + β1X

′
n−1)Zn |]

≤ β1E[|Zn |]E[|Xn−1 − X ′
n−1|]

Since Zn
d= Z0 > 0 a.s., the geometric convergence rate is

D = β1E[Z0]. ��
Proof of Lemma 5.5 For a fixed n ≥ 0, suppose that Zn+1,

Z ′
n+1 are independent. By Proposition 2.3, the total variation

distance between the two processes is bounded above by the
expectation of the total variation.

‖L(Xn+1) − L(X ′
n+1)‖ ≤ E[‖L((β0 + β1Xn)Zn+1)

− L((β0 + β1X
′
n)Zn+1)‖]

Note that Zn+1 and Z ′
n+1 are used interchangeably in the total

variation distance since Zn+1
d= Z ′

n+1. Let Yn = β0 +β1Xn ,
Y ′
n = β0 + β1X ′

n , � = Y ′
n − Yn , and �′ = �

Yn
. WLOG

Y ′
n > Yn so that �,�′ > 0. Then,

‖L(Xn+1) − L(X ′
n+1)‖

≤ E[‖L(Yn Zn+1) − L(Y ′
n Zn+1)‖] by Proposition 2.3

= E[‖L(Yn Zn+1) − L((Yn + �)Zn+1)‖]
= E[‖L(Zn+1) − L((1 + �′)Zn+1)‖] by Proposition 2.2

= E[‖L(log(Zn+1)) − L(log(1 + �′) + log(Zn+1))‖]
by Proposition 2.2

≤ M + 1

2
sup
x

ex fZn (e
x )E[log(1 + �′)]

≤ M + 1

2
sup
x

ex fZn (e
x )

E[|�|]
β0

= M + 1

2
sup
x

ex fZn (e
x )

β1E[|Xn − X ′
n |]

β0

The second last inequality is by Lemma B.3. See the proof
of Lemma 4.3 for more details. The last inequality is by the
Mean Value Theorem. ��

D.2 Proof of lemmas used in Theorem 5.8

Proof of Lemma 5.9 Let {Xn}n≥1 ∈ R and {X ′
n}n≥1 ∈ R be

two copies of the asymmetric ARCH process.
For a fixed n ≥ 1, let Zn = Z ′

n and so,

E[|Xn − X ′
n |]

= E

[
|
√

(aXn−1 + b)2 + c2Zn −
√

(aX ′
n−1 + b)2 + c2Zn |

]

= |
√

(aXn−1 + b)2 + c2 −
√

(aX ′
n−1 + b)2 + c2|

E[|Zn |]

Note that the derivative of f (x) = √
(ax + b)2 + c2 is

| f ′(x)| = | a(ax + b)√
(ax + b)2 + c2

| ≤ |a(ax + b)|√
(ax + b)2

= |a| (D15)

and so,

E[|Xn − X ′
n|] ≤ |a|E[|Zn|]E[|Xn−1 − X ′

n−1|]

Thus, the geometric convergence rate is D = |a|E[|Z0|]. ��
Proof of Lemma 5.10 Let {Xn}n≥1 ∈ R and {X ′

n}n≥1 ∈ R be
two copies of the asymmetric ARCH process.

For n ≥ 1, Zn, Z ′
n are independent. By Proposition 2.3,

the total variation distance between the two processes is
bounded above by the expectation of the total variation with
respect to Xn−1, X ′

n−1, Zn, Z ′
n .

‖L(Xn) − L(X ′
n)‖

≤ E

[
‖L(

√
(aXn−1 + b)2 + c2Zn)

−L(

√
(aX ′

n−1 + b)2 + c2Z ′
n)‖

]

Let Yn−1 = √
(aXn−1 + b)2 + c2 and Y ′

n−1

= √
(aXn−1 + b)2 + c2, � = Y ′

n−1 − Yn−1 and �′ =
�

Yn−1
. WLOG, Y ′

n−1 < Yn−1, so −1 < �′ < 0, because

Yn−1,Y ′
n−1 > 0 and

‖L(Xn) − L(X ′
n)‖ ≤ E[‖L(Yn−1Zn) − L(Y ′

n−1Zn)‖]
= E[‖L(Yn−1Zn) − L((Yn−1 + �)Zn)‖]
by Proposition 2.2

= E[‖L(Zn) − L((1 + �′)Zn)‖] by Proposition 2.2

≤ E

[
sup
x

1 − πZn (x)

π(1+�′)Zn (x)

]

by Lemma 6.16 of Levinet al. (2017)

Let the density of Zn be πZn (x), then π(1+�′)Zn (x) =
1

1+�′ πZn

(
x

1+�′
)
.

‖L(Xn) − L(X ′
n)‖ ≤ E

⎡
⎣sup

x
1 − (1 + �′) πZn (x)

πZn

(
x

1+�′
)
⎤
⎦

≤ E[sup
x

1 − (1 + �′)]
= E[�′]
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≤ E[|Yn−1 − Y ′
n−1|]

c
since Yn−1 ≥ c

≤ |a|
c
E[|Xn−1 − X ′

n−1|]
by equation D15

The second inequality is by assumptionπZn (x)≥πZn

(
x

1+�′
)
.

��

D.3 Proof of lemmas used in Theorem 5.13

Proof of Lemma 5.14 Let {Xn}n≥1 ∈ R and {X ′
n}n≥1 ∈ R be

two copies of the GARCH process. For n ≥ 2, let Zn = Z ′
n .

First note that,

E[|Xn − X ′
n|] = E[|σn Zn − σ ′

n Zn|] = E[|σn − σ ′
n||Zn|]

= E[|σn − σ ′
n|]E[|Zn|] (D16)

Next, we find an upper bound on E[|σn − σ ′
n|] by first

noting that σ 2
n = α2 + (β2Z2

n−1 + γ 2)σ 2
n−1 by substitution.

E[|σn − σ ′
n|]

= E

[
|
√

α2 + (β2Z2
n−1 + γ 2)σ 2

n−1

−
√

α2 + (β2Z2
n−1 + γ 2)σ

′2
n−1|

]

≤ E

[√
β2Z2

n−1 + γ 2

]
E

[
|σn−1 − σ

′
n−1|

]

= E

[√
β2Z2

n−1 + γ 2

]
E[|Xn−1 − X ′

n−1|]
E[|Zn−1|]

The above inequality is by taking themaximumof the deriva-
tive and the last equality is a result of Eq. D16. Finally,
substituting E[|σn − σ ′

n|] into Eq. D16,

E[|Xn − X ′
n|]

≤ E[
√

β2Z2
n−1 + γ 2] E[|Xn−1 − X ′

n−1|]
E[|Zn−1|] E[|Zn|]

= E[
√

β2Z2
n−1 + γ 2]E[|Xn−1 − X ′

n−1|]
≤
√

β2E[Z2
0] + γ 2E[|Xn−1 − X ′

n−1|]
by Jensen’s inequality

Thus, the geometric convergence rate is

D =
√

β2E[Z2
0] + γ 2. ��

Proof of Lemma 5.15 Let {Xn}n≥1 ∈ R and {X ′
n}n≥1 ∈ R be

two copies of the GARCH process.
For n ≥ 2, suppose that Zn, Z ′

n are independent. By
Proposition 2.3, the total variation distance between the two

processes is bounded above by the expectation of the total
variation.

‖L(Xn) − L(X ′
n)‖ ≤ E[‖L(σn Zn) − L(σ ′

n Zn)‖]

Let� = σ ′
n−σn and�′ = �

σn
.WLOG, σ ′

n < σn , so�,�′ <

0 because σn, σ
′
n > 0 and

‖L(Xn) − L(X ′
n)‖

= E[‖L(σn Zn) − L((σn + �)Zn)‖]
by Proposition 2.2

= E[‖L(Zn) − L((1 + �′)Zn)‖]
by Proposition 2.2

≤ E

[
sup
x

1 − πZn (x)

π(1+�′)Zn (x)

]

by Lemma 6.16 of Levinet al. (2017)

Let the density of Zn be πZn (x), then π(1+�′)Zn (x) =
1

1+�′ πZn

(
x

1+�′
)
.

‖L(Xn) − L(X ′
n)‖

≤ E

⎡
⎣sup

x
1 − (1 + �′) πZn (x)

πZn

(
x

1+�′
)
⎤
⎦

≤ E[sup
x

1 − (1 + �′)]

by assumption πZn (x) ≥ πZn

(
x

1 + �′

)

= E[�′]
≤ E[|σ ′

n − σn|]
α

since σn ≥ α

≤ D

αE[|Zn−1|] E[|Xn−1 − X ′
n−1|]

by equation in proof D.3

��
Proof of Lemma 5.16

E[|X1 − X ′
1|]

= |σ 2
1 − σ

′2
1 |E[|Z1|] by equation in proof D.3

= |
√

α2 + β2X2
0 + γ 2σ 2

0 −
√

α2 + β2X
′2
0 + γ 2σ

′2
0 |E[|Z1|]

≤
√

|(α2 + β2X2
0 + γ 2σ 2

0 ) − (α2 + β2X
′2
0 + γ 2σ

′2
0 )|E[|Z1|]

since|√x − √
y| =

√
(
√
x − √

y)2 =
√
x + y − 2

√
x
√
y

≤ √|x − y|
≤
√

β2|X2
0 − X

′2
0 | + γ 2|σ 2

0 − σ
′2
0 |E[|Z0|]

��
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