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Abstract. Theoretical work on Markov chain Monte Carlo (MCMC) algorithms
has so far mainly concentrated on the properties of simple algorithms such as the Gibbs
sampler, or the full-dimensional Hastings-Metropolis algorithm. In practice, these simple
algorithms are used as building blocks for more sophisticated methods, which we shall
refer to as hybrid samplers. It is often hoped that good convergence properties (geometric
ergodicity, etc.) of the building blocks will imply similar properties of the hybrid chains.
However, little is rigorously known.

In this paper, we concentrate on two special cases of hybrid samplers. In the first
case, we provide a quantitative result for the rate of convergence of the resulting hybrid
chain. In the second case, concerning the combination of various Metropolis algorithms,
we establish geometric ergodicity.

1. Introduction.

Theoretical work on Markov chain Monte Carlo (MCMC) algorithms has so far mainly

concentrated on the properties of simple algorithms such as the Gibbs sampler, or the full

dimensional Hastings-Metropolis algorithm. This is understandable since even these simple

algorithms are difficult to analyse, and are still not fully understood. In practice, these

simple algorithms are used as building blocks for more sophisticated methods, which we

shall refer to as hybrid samplers. It is often hoped that good convergence properties of the

building blocks will translate to properties of the hybrid chains, however to date, very little

work has been done to try and make these arguments rigorous. This article attempts to

build on the results of Roberts and Rosenthal (1997), which consider geometric ergodicity

properties of hybrid chains in terms of their constituent component algorithms.
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In this paper, we concentrate on two special cases, where we can make more practical

geometric ergodicity statements. In the first case, we are actually able to give a quanti-

tative result for the rate of convergence of the resulting hybrid algorithm, although this

is at the expense of imposing a very strong uniform type of geometric ergodicity on the

constituent component algorithms. In the second case, we consider hybrid chains arising

from combining various Metropolis algorithms, and adapt results of Roberts and Tweedie

(1996) to establish geometric ergodicity.

2. Preliminaries.

Recall that, given a probability distribution π(·) on the state space X = X1 × X2 ×

. . . × Xk, the usual deterministic-scan Gibbs sampler (DUGS) is the Markov kernel P =

Q1Q2 . . . Qk, where Qi is the Markov kernel which replaces the ith coordinate by a draw

from π(dxi|{xj}j 6=i), leaving xj fixed for j 6= i. The random-scan Gibbs sampler (RSGS),

given by P = 1
k

∑
i Qi, is sometimes used instead. These are standard Markov chain Monte

Carlo techniques (see, e.g. Gelfand and Smith, 1990; Smith and Roberts, 1993; Tierney,

1994).

Often the full conditionals π(dxi|{xj}j 6=i) may be easily sampled, so that DUGS or

RSGS may be efficiently run on a computer. However, sometimes this is not feasible.

Instead, one can define new operators Pi which are easily implemented, such that Pn
i

converges to Qi as n →∞. This is the method of “variable-at-a-time Metropolis-Hastings”

or “Metropolis within Gibbs” (cf. Tierney, 1994, Section 2.4; Chan and Geyer, 1994,

Theorem 1; Green, 1994; Metropolis et al., 1953). Such samplers prompt the following

definition (taken from Roberts and Rosenthal, 1997).

Definition. Let C = (P1, P2, . . . , Pk) be a collection of Markov kernels on a state space

X . The random-scan hybrid sampler for C is the sampler defined by

PRS =
1
k

(P1 + . . . + Pk) .

In addition to the variable-at-a-time Metropolis-Hastings algorithms mentioned above,

such hybrid samplers often arise when larger MCMC algorithms are “constructed” out of

smaller ones. For example, if the Pi are themselves RSGS samplers, then the random-scan
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hybrid sampler would correspond to building a large Gibbs sampler out of smaller ones.

Similarly, if the Pi are themselves Metropolis-Hastings algorithms, then the hybrid sampler

can again be viewed as a Metropolis-Hastings algorithm, but with (in general) a singular

proposal distribution (cf. Tierney, 1995); this is considered further in Section 4 below.

Theoretical properties of such hybrid samplers were considered in Roberts and Rosen-

thal (1997). In particular, it was shown (Theorem 6) that if for a particular model RSGS

is geometrically ergodic in an appropriate sense (say, in L2(π)), and if (Pi)n → Qi as

n →∞ (again, say, in L2(π)), then the resulting random-scan hybrid sampler would again

be geometrically ergodic.

However, such a result leads to further questions. Firstly, is it possible to provide

any quantitative bounds for these hybrid samplers? Secondly, can geometric ergodicity be

established for, say, Metropolis-Hastings algorithms (which are ergodic but do not converge

in L2(π))?

The first of these questions is addressed in the next section, and the second is addressed

in the final section of this paper.

3. Strong uniform ergodicity and quantitative bounds.

An important and difficult problem in the theory of MCMC algorithms is to provide

quantitative bounds on their distance to stationarity after a finite number of steps. Such

bounds can then be used to determine how long to run the algorithm in practice, to achieve

sufficient accuracy of results. While there have been some successes with this approach

(see e.g. Meyn and Tweedie, 1994; Rosenthal, 1995), the question of quantitative bounds

in general remains problematic.

In this section, we provide quantitative bounds on convergence rates for hybrid sam-

plers, under a strong hypothesis about uniform convergence of the constituent Markov

chains. We recall that a Markov chain is uniformly ergodic if there is N ∈ N and ρ < 1

such that ‖PN (x, ·) − π(·)‖var ≤ ρ for all x ∈ X , or equivalently (cf. Meyn and Tweedie,

1993, Theorem 16.0.2) if sup
x∈X

‖Pn(x, ·)− π(·)‖var → 0 as n →∞.
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Definition. A Markov chain P (·, ·) on a state space X , with stationary distribution π(·),

is (N, ε)-strongly uniformly ergodic for some N ∈ N and ε > 0 if

PN (x, ·) ≥ ε π(·) , x ∈ X .

For such a chain, it follows that for n ≥ 0,

PN+n(x, ·) =
∫

PN (x, dy)Pn(y, ·) ≥
∫

επ(dy)Pn(y, ·) = επ(·) .

In particular, P is also (k, ε)-strongly uniformly ergodic for any k ≥ N .

It also follows immediately (see e.g. Meyn and Tweedie, 1993, Theorem 16.0.2) that

‖P tN (x, ·) − π(·)‖var ≤ (1 − ε)t for t = 1, 2, . . ., for any x ∈ X ; thus, strong uniform

ergodicity implies uniform ergodicity. The converse to this implication is considered in the

following Proposition.

Proposition 1. In general, a uniformly ergodic Markov chain need not be strongly

uniformly ergodic. However, if a Markov chain is both uniformly ergodic and reversible,

then it is strongly uniformly ergodic.

Proof. For a counter-example, let X be the set of all non-negative integers, and set

P (n, 0) = P (n, n + 1) = 1
2 , for all n ∈ X . Then this Markov chain is easily seen to be

uniformly ergodic but not strongly uniformly ergodic.

Suppose now that the Markov chain is reversible. By uniform ergodicity, we have that

Pn(x, ·) ≥ εν(·) for all x ∈ X , for some n ∈ N, ε > 0, and probability measure ν on X (cf.

Meyn and Tweedie, 1993, Theorem 16.0.2). But then by reversibility,

π(dx)Pn(x, dy) = π(dy)Pn(y, dx) ≥ π(dy)εν(dx), x, y ∈ X ,

so that Pn(x, dy) ≥ ε dν
dπ (x)π(dy). Choose A ⊆ X and δ > 0 such that dν

dπ (x) > δ for all

x ∈ A, and π(A) > 0 (so that ν(A) > 0). Then for any z ∈ X , setting K = ε2δν(A) > 0,

we have

P 2n(z, dy) ≥ Pn(z,A) inf
x∈A

Pn(x, dy) ≥ εν(A) εδπ(dy) = Kπ(dy) ,

as required.
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Remark. It is easily seen that being strongly uniformly ergodic is equivalent to the

existence of a strong stationary time (cf. Aldous and Diaconis, 1987) which is independent

of the process itself.

We now use strong uniform ergodicity to establish quantitative bounds on certain

hybrid samplers. We adopt the notation

x−i = (x1, . . . , xi−1, xi+1, . . . , xk) ,

X−i = X1 × . . .×Xi−1 ×Xi+1 × . . .×Xk ,

and

x∗−i = {x1} × . . .× {xi−1} × Xi × {xi+1} × . . .× {xk} .

Theorem 2. Let π(·) be a probability distribution on a state space X = X1 × . . .×Xk.

For 1 ≤ i ≤ k, let Ni ∈ N and εi > 0 be given, and let Pi be a Markov kernel on

X which fixes coordinates other than i. Assume that for each x−i ∈ X−i, Pi

∣∣
x∗−i

has

stationary distribution π(·|x−i) and is (Ni, εi)-strongly uniformly ergodic. Assume further

that RSGS, with stationary distribution π(·), is (N ′, ε′)-strongly uniformly ergodic. Then

the random-scan hybrid sampler PRS = 1
k (P1 + . . . + Pk) is (N∗, ε∗)-strongly uniformly

ergodic, where

N∗ = N ′ max
1≤i≤k

{Ni} ; ε∗ = ε′ min
1≤i≤k

{εN ′

i }k
−N ′

(
max

1≤i≤k
{Ni}−1

)
.

Remarks. We emphasise that this theorem requires the associated RSGS to be strongly

uniformly ergodic; this may not be easy to verify in practice. We also note that, as seen

from the proof, this result is rather crude for large values of Ni and N ′; it is most useful

when N1 = . . . = Nk = N ′ = 1.

Proof. As usual, let Qi be the Markov kernel which replaces the ith coordinate by a

draw from π(dxi|x−i), leaving x−i fixed.

It follows from the hypotheses that

Pn
i (x, ·) ≥ εi Qi(x, ·) , n ≥ Ni , i = 1, 2, . . . , k
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and [
1
k

(
Q1(x, ·) + . . . + Qk(x, ·)

)]N ′

≥ ε′ π(·) .

Then

(PRS)N ′ max{Ni}(x, ·) =
[

1
k

(
P1(x, ·) + . . . + Pk(x, ·)

)]N ′ max{Ni}

≥
(
k−max{Ni}

[
P

max{Ni}
1 (x, ·) + . . . + P

max{Ni}
k (x, ·)

])N ′

≥
(

k−(max{Ni}−1) min{εi}
1
k

[
Q1(x, ·) + . . . + Qk(x, ·)

])N ′

≥ k−N ′(max{Ni}−1) min{εN ′

i } ε′ π(·) ,

giving the result.

It follows immediately that

‖(PRS)tN∗(x, ·)− π(·)‖var ≤ (1− ε∗)t , t = 1, 2, . . .

In particular, if N ′ = N1 = . . . = Nk = 1, then N∗ = 1 and ε∗ = ε′ min
1≤i≤k

{εi}, so that

‖(PRS)t(x, ·)− π(·)‖var ≤ (1− ε′ min{εi})t.

4. Hybrid Metropolis chains.

In this section, we consider hybrid samplers whose constituent chains Pi each arise

from a symmetric random walk Metropolis algorithm (see Metropolis et al., 1953; Hast-

ings, 1970; Smith and Roberts, 1993) on the ith coordinate. These hybrid samplers may

themselves be regarded as Metropolis algorithms, but with singular proposal distributions

(cf. Tierney, 1995). We shall prove that, under appropriate conditions, the hybrid samplers

will be geometrically ergodic. Our proof uses the theory of drift and minorisation condi-

tions for general Markov chains, as in Nummelin (1984) or Meyn and Tweedie (1993), and

follows a similar argument to Roberts and Tweedie (1996). Specifically, we shall eventu-

ally show that all bounded sets are small for PRS , and that for an appropriate function V

(which will need to depend on the dimension k), we have lim sup|x|→∞ PRSV (x)/V (x) < 1.
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[Recall the definition Pf(x) =
∫

f(y)P (x, dy), and that a set C is small for P if there is

n ∈ N, ε > 0, and a probability measure ν(·), such that Pn(x, ·) ≥ εν(·) for all x ∈ C.]

Let π be a positive C1 density (with respect to k-dimensional Lebesgue measure) for

a probability distribution on the state space Rk. For 1 ≤ i ≤ k, let Pi be a symmetric

random-walk Metropolis algorithm (with respect to π(·)) on the ith coordinate. Thus,

started from the k-vector x, the proposal in the ith direction is given by x + Ziei, where

ei denotes the ith coordinate vector, and where Zi is drawn from a symmetric increment

density qi(y) with respect to one-dimensional Lebesgue measure; this proposal is then

accepted with probability min (1, π(x + Ziei)/π(x)). We shall assume for simplicity that

for each i, there exist positive constants εi and δi such that

qi(y) ≥ εi for |y| < δi. (1)

Finally, we let PRS be as in Section 2.

Given x ∈ Rk, let Ai(x) = {z; z = yei and π(x+z) ≥ π(x)} and let Ri(x) = {z; z =

yei and π(x + z) < π(x)}. In other words, Ai(x) represents the set of points which if

proposed would always be accepted, whereas Ri(x) represents those which are rejected

with positive probability. We will also need the reflected set, −Ai(x) = {x; −x ∈ Ai(x)}.

We introduce the following conditions on π. We will assume that π is bounded, that

for sufficiently small d > 0 we have∫
Rk

π1−d(x)dx < ∞ , (2)

and that we have the “asymptotically exponentially decreasing tails” condition

lim inf
|x|→∞

|∇ log π(x)| > 0 . (3)

For each x, let κ(x) denote the maximum curvature of all geodesic curves through the

surface {y; π(y) = π(x)} at the point x (see e.g. Boothby, 1986 for the relevant definitions).

We assume that κ(x) is well-defined, at least for sufficiently large |x|. We further assume

that

lim
|x|→∞

κ(x) = 0 , (4)
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that

lim sup
|x|→∞

|(∇ log |∇ log π(x)|)| < ∞ , (5)

and that

lim sup
|x|→∞

∫
Ri(x)

(
π(x)d

π(x− yei)d
− π(x + yei)d

π(x)d

)
≤ 0 (6)

for all i, where {ei} denote the orthogonal coordinate set (along which the Pi’s sample).

We introduce the drift function V (x) = π(x)−d. It turns out that we will need to

choose a value of d sufficiently small not only to satisfy (2) but also to satisfy a condition

on the next calculation.

Proposition 3. For all Pi,

PiV (x) ≤ r(d)V (x)

where r(d) = 1 + (1 − d)(1−d)/dd, for all x ∈ X . Hence, for all ε > 0, there is d with

0 < d < ε, such that 1 < r(d) < 1 + ε.

Proof. Considering separately the cases where the proposal is to Ri(x) and is rejected

(so the value of V is unchanged), where the proposal is to Ri(x) and is accepted, and

where the proposal is to Ai(x) (and is necessarily accepted), we have that

PiV (x)
V (x)

=
∫

Ri(x)

qi(y)
(

1− π(x + yei)
π(x)

)
dy +

∫
Ri(x)

qi(y)
π(x + yei)−d

π(x)−d

(
π(x + yei)

π(x)

)
dy +

∫
Ai(x)

qi(y)
π(x + yei)−d

π(x)−d
dy

=
∫
R

qi(y)I(x + yei)dy ,

where

I(z) =

 1− π(z)/π(x) + (π(z)/π(x))1−d, z ∈ Ri(x)

(π(x)/π(z))d, z ∈ Ai(x) .

We claim that I(z) ≤ r(d) for all z ∈ Ri(x) ∪ Ai(x). Indeed, I(z) ≤ 1 on Ai(x)

by definition. Furthermore, setting w = π(z)/π(x), we have that for z ∈ Ri(x), I(z) =

1−w + w1−d with 0 ≤ w ≤ 1. This is maximised at w = (1− d)1/d with maximising value

r(d) above. The inequality follows.
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The second statement is immediate since lim
d↓0

r(d) = 1.

Lemma 4. All bounded subsets of Rk are small for PRS .

Proof. By (1), it is easy to see that P k
RS(x, ·) has a non-trivial continuous component

with respect to k-dimensional Lebesgue measure. Call this continuous component s(x, ·),

say. Note that by (1), for suitable constants ε and δ, we have

s(x,x + y) ≥ ε , whenever |yi| ≤ δ for 1 ≤ i ≤ k .

Now, since π is positive and continuous, it is bounded away from zero on compact intervals.

It follows that the set [−δ, δ]k is small. By taking convolutions, it follows that for any

N ∈ N, there is ε′ > 0 such that the continuous component sN (x, ·) of P kN
RS (x, ·) satisfies

sN (x,x + y) ≥ ε′ , whenever |yi| ≤ Nδ/2 for 1 ≤ i ≤ k .

Hence, the set [−Nδ/2, Nδ/2]k is small. The result follows since any bounded set C is

contained in [−Nδ/2, Nδ/2]k for some sufficiently large N .

Theorem 5. Suppose conditions (2) to (6) are satisfied. Then the random scan hybrid

chain PRS is geometrically ergodic.

The following lemma is needed for the proof of Theorem 5. We shall write n(x) for

the (outward) normal to the contour manifold through x, that is

n(x) =
−∇ log π(x)
|∇ log π(x)|

.

Lemma 6. Assume (4) holds, and let {xj} → ∞ be a sequence in Rk. Then for all

y ∈ R,

lim
j→∞

|n(xj + yei)− n(xj)| = 0 . (7)

Moreover, suppose that

lim inf
j→∞

n(xj) · ei ≡ c1 > 0
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and letting c2 = lim infj→∞ |∇ log π(xj)|, then for all y ∈ R

lim inf
j→∞

∂

∂y
log π(xj + yei) ≥ c1c2 . (8)

It follows that for y < 0 we have that

lim sup
j→∞

π(xj + yei)
π(xj)

≤ eyc1c2 ; (9)

and for y ≥ 0,

lim inf
j→∞

π(xj + yei)
π(xj)

≥ eyc1c2 . (10)

Finally, if c2 > 0, then

lim
j→∞

Ri(xj) = (−∞, 0) (11)

in the sense that 1Ri(xj) → 1(−∞,0) pointwise.

Identical results exist for the case where lim supj→∞ n(xj) · ei < 0. These results are

easily written down by relacing ei by −ei.

Lemma 6 provides most of what is needed for the proof of Theorem 5. The only

complications arise where c1c2 can take the value 0.

Proof of Lemma 6. Statement (7) follows directly from the curvature condition, since

it implies that the contours of the density at two locations x and z for x and z large and

for |x− z| small are approximately parallel to each other (otherwise they would intersect).

Statement (8) now follows from the equation

∂

∂y
log π(x + yei) = |∇ log π(x + yei)|n(xj + yei) · ei .

Statements (9), (10) and (11) then follow easily.

Proof of Theorem 5. Because of Lemma 4, and by (2) which ensures that V ∈ L1(π)

for sufficiently small d, it suffices (see e.g. Nummelin, 1984, Proposition 5.21; Meyn and

Tweedie, 1993, Theorem 15.0.1; Roberts and Tweedie, 1996) to demonstrate that

lim sup
|x|→∞

PRSV (x)
V (x)

< 1 .
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So, for contradiction, suppose that we have a sequence of points {xj}, with |xj | → ∞,

such that

lim inf
i→∞

PRSV (xj)
V (xj)

≥ 1 .

By taking a subsequence if necessary, we can (and do) assume that n(xj) converges

to a limiting direction f . There must be at least one coordinate direction ei with f ·ei 6= 0.

By renumbering the coordinates as necessary, and relacing ei by −ei if necessary, we can

assume that 1 ≤ n ≤ k is such that ei · f > 0 for 1 ≤ i ≤ n but that f is orthogonal to ei

for n + 1 ≤ i ≤ k.

We take d sufficiently small that r(d) < 2k−1
2k−2 . We compute that for large enough |x|

we have

PiV (x)
V (x)

=
∫

Ri(x)

(
1− π(x + yei)

π(x)
+

π(x + yei)1−d

π(x)1−d

)
qi(y)dy +

∫
Ai(x)

π(x)d

π(x + yei)d
qi(y)dy

(12)

= T1(xj) + T2(xj)

say, where

T1(xj) =
∫

Ri(x)

[
2−

(
1− π(xj + yei)1−d

π(xj)1−d

) (
1− π(xj + yei)d

π(xj)d

)]
qi(y)dy

and

T2(xj) =
∫

Ai(x)

π(xj)d

π(xj + yei)d
qi(y)dy −

∫
Ri(x)

π(xj + yei)d

π(xj)d
qi(y)dy .

Now,

lim sup
j→∞

T2(xj) = lim sup
j→∞

(∫ 0

−∞

π(xj)d

π(xj − yei)d
qi(y)dy −

∫ 0

−∞

π(xj + yei)d

π(xj)d
qi(y)dy

)
≤ 0 .

Here the equality follows from (11) and the dominated convergence theorem (since the

integrand is bounded), and the inequality follows from (6). Let c1 = lim infj→∞ n(xj) · ei.

By (3), c2 = lim infj→∞ |∇ log π(xj)| > 0. Therefore, from (10) and (11), at least for

1 ≤ i ≤ n,

lim inf
j→∞

T1(xj) ≤ 2
∫ 0

−∞
qi(y)dy −

∫ 0

−∞
(1− edc1c2y)(1− e(1−d)c1c2y)qi(y)dy < 1 ,
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since
∫ 0

−∞ qi(y)dy = 1/2 by symmetry. Therefore for 1 ≤ i ≤ n,

lim sup
j

PiV (xj)/V (xj) < 1 , 1 ≤ i ≤ n . (13)

To finish, consider the sequence {aj}, where aj = |∇ log π(xj)|. By (3), lim infj aj > 0

= 0. Therefore (again by subsequencing if necessary) we can assume that aj → a∞ for

some a∞ ∈ (0,∞]. We need to consider separately the cases where a∞ is finite or infinite.

If a∞ < ∞, then by (5), we have for i > n that limj→∞
π(xj+yei)

π(xj)
= 1 for all

y ∈ R (since ei · f = 0), so that limj→∞ PiV (xj)/V (xj) = 1. Therefore by (13),

lim supj→∞ PRSV (xj)/V (xj) < 1 for a contradiction.

If a∞ = ∞, then for i ≤ n, all proposed jumps into Ri(xj) are asymptotically rejected

(by (9)) and all jumps to Ai(xj) are asymptotically accepted (by (10)). Specifically, for

i ≤ n, limj→∞
π(xj+yei)

π(xj)
= 0 for y < 0, and limj→∞

π(xj+yei)
π(xj)

= ∞ for y > 0. It follows

that the integrand in (12) converges to 1(−∞,0)(y), and since the integrands in (12) are

uniformly bounded (by r(d)), we have by the dominated convergence theorem that

lim sup
j→∞

PiV (xj)
V (xj)

=
∫ 0

−∞
qi(y)dy = 1/2 .

It follows from Proposition 3 that

lim sup
j→∞

PRSV (xj)/V (xj) = lim sup
j→∞

1
k

k∑
i=1

PiV (xj)
V (xj)

≤ n

2k
+

r(d)(k − n)
k

≤ 1
2k

+
r(d)(k − 1)

k
<

1
2k

+
(k − 1)(2k − 1)

k(2k − 2)
= 1 ,

for a contradiction in this case.

Remark. The nature of the proof of Theorem 5 suggests that explicit bounds on the

total variation distance from stationarity (cf. Meyn and Tweedie, 1994; Rosenthal, 1995)

may be obtainable in this case, though we do not pursue that here.
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