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Abstract. We define a notion of de-initialising Markov chains. We prove that to analyse

convergence of Markov chains to stationarity, it suffices to analyse convergence of a de-

initialising chain. Applications are given to Markov chain Monte Carlo algorithms and to

convergence diagnostics.

1. Introduction.

Although Markov chains are routinely used in many probabilistic and algorithmic ap-

plications, the complexity of the state space can easily make the analysis of its convergence

properties difficult. However, in some cases, it is possible to consider “simpler” processes

which contain all the relevant convergence information for the chain of interest, and such

that the analysis of the derived process is much more straightforward. Loosely speaking,

we shall call such a process de-initialising for the chain of interest (although we shall find

that there are a number of different natural de-initialising notions).

This paper therefore investigates this notion of de-initialising. A major motivation

for this comes from Markov chains induced by various types of Markov chain Monte Carlo

(MCMC) algorithms, including the Gibbs sampler and the slice sampler. We shall prove

results bounding the total variation distance to stationarity of a Markov chain, in terms of
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the distance to stationarity of an appropriate de-initialising process. We shall also prove

a general result which sheds some light on the use of convergence diagnostics for MCMC

algorithms.

Let {Xn}∞n=0 be a Markov chain on a state space X . Let {Yn}∞n=1 be a second chain

(not necessarily Markovian), on a state space Y. We shall say that {Yn} is de-initialising

for {Xn} if for each n ∈ N, conditional on Yn, we have that Xn is conditionally independent

of X0.

More formally, {Yn} is de-initialising for {Xn} if for each n ≥ 1 (but not necessarily

for n = 0),

L (Xn |X0, Yn) = L (Xn |Yn) (1)

i.e. the conditional distribution of Xn given X0 and Yn is required to be a function of Yn

only.

Equation (1) also explains the terminology “de-initialising”. Indeed, in the presence

of Yn, the distribution of Xn no longer depends on its initial value X0. It is this lack

of dependence on initial value which makes Xn be “de-initialised”; and it is the agent

Yn which is performing this “de-initialising”. Such reasoning also makes clear that de-

initialising is closely related to Markov chain convergence issues. Indeed, a chain can be

said to converge when it completely forgets its initial value.

Remark. An expression like L (Xn |X0, Yn) in (1) is really short-hand for the regular

conditional distribution of Xn given the sigma-algebra generated by X0 and Yn. These

conditional distributions are in fact only defined up to a set of probability 0, so all equations

such as (1) should be taken as holding with probability 1 only. For a formal definition of

conditional probability see e.g. Billingsley (1995, p. 439). We assume throughout that X

is a standard Borel space so that these regular conditional distributions always exist; see

e.g. Durrett, 1991, pp. 27 and 199).

Intuitively, the distribution of Xn is “completely determined” by the value of Yn, i.e.

once we know Yn then we know all the history we need to make predictions about Xn.

(Note that Xn may not be a deterministic function of Yn, but it is a “random function”

of Yn in some sense.)
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Our notion of de-initialising is somewhat related to the classical statistical notion of

sufficiency introduced by Fisher (1920), see e.g. Cox and Hinkley (1974) and Lauritzen

(1988). Indeed, if we adopt the point of view that X0 is a statistical parameter of interest,

then Yn being de-initialising for Xn is formally equivalent to Yn being a sufficient statistic

for the parameter X0, given the datum Xn.

In the case where Yn = tn(X0, . . . , Xn) is a deterministic function of X0, . . . , Xn,

and where we are working relative to a family of probability distributions P, there are

additional notions of sufficiency more closely related to the present paper. For example,

Barndorff-Nielsen and Skibinsky (1963) and Skibinsky (1967) introduced the notion of

adequacy of a sufficient statistic to another random variable; and Lauritzen (1972; 1974;

1988) introduced the notion of total sufficiency for sequences of random variables. Our

notion of “forward de-initialising” presented in Section 2 herein, together with classical

sufficiency relative to some family P, is equivalent to total sufficiency in the sense of

Lauritzen. Furthermore, Lauritzen’s total sufficiency is equivalent to adequacy of Yn for

the collections Xn+1, . . . , Xn+k, for all k ∈ N. In addition, {Yn} is transitive for {Xn}

(Bahadur, 1954; Lauritzen, 1988, p. 29) if Yn is conditionally independent of the history

X0, . . . , Xn−1, given Yn−1. This is quite similar to our definition of de-initialising, except

with the conditional independence being for Yn instead of for Xn.

Whilst these classical notions of sufficiency are clearly related to the concepts consid-

ered here, our motivation is very different. Our interest is specifically in summarising the

convergence of Markov chains to stationarity in terms of simpler processes. We are not

concerned here with families of distributions P for dependent data. Instead, we concentrate

on summarising the distribution of a single Markov chain sequence.

In Section 2, we demonstrate that the total variation distance between the distri-

butions of the de-initialising process at fixed time started at two different initial values

bounds the corresponding quantity for the original Markov chain. Thus, the de-initialising

process can be used to bound the convergence rate of the chain of interest.

Section 3 gives a number of examples of de-initialising processes, and some applica-

tions of the results of Section 2. In Section 4, we clarify the logical relationships between

the various notions of de-initialising that we have introduced. Section 5 develops an appli-
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cation of de-initialising processes to diagnosing convergence of Markov chain Monte Carlo

algorithms. Section 6 introduces partial de-initialising, a notion of de-initialising after a

particular stopping time, with an application to the independence sampler.

2. Implications of de-initialising.

The first result of this paper states that the total variation distance to stationary for

{Xn} is bounded above by that for a de-initialising chain {Yn}. This result is analogous

to the result of Rosenthal (1992, Proposition 1 (4)) for pseudo-finite chains, but is much

more general. To state it cleanly, we shall use the short-hand notation

L(Xn |X0 ∼ µ) ≡
∫
L(Xn |X0 = x) µ(dx) ,

i.e. with probabilities given by

P(Xn ∈ S |X0 ∼ µ) ≡
∫

P(Xn ∈ S |X0 = x) µ(dx)

and expectations given by∫
f(y)P(Xn ∈ dy |X0 ∼ µ) ≡

∫ ∫
f(y)P(Xn ∈ dy |X0 = x) µ(dx) . (2)

We then have

Theorem 1. Let {Yn} be de-initialising for {Xn}. Then for any two initial distributions

µ and µ′,

‖L(Xn |X0 ∼ µ)− L(Xn |X0 ∼ µ′)‖ ≤ ‖L(Yn |X0 ∼ µ)− L(Yn |X0 ∼ µ′)‖ ,

where ‖ · · · ‖ denotes total variation distance. In particular, if µ and µ′ are point masses,

then

‖L(Xn |X0 = x)− L(Xn |X0 = x′)‖ ≤ ‖L(Yn |X0 = x)− L(Yn |X0 = x′)‖ .
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Proof. Recall that

‖ν − ν′‖ = sup
S
|ν(S)− ν′(S)| (3)

and also

‖ν − ν′‖ = sup
0≤f≤1

∣∣∣∣ ∫
f dν −

∫
f dν′

∣∣∣∣ (4)

Now, for any measurable set S, we have

|P(Xn ∈ S |X0 ∼ µ)−P(Xn ∈ S |X0 ∼ µ′)|

=
∣∣∣∣∫ P(Xn ∈ S |X0 = x) µ(dx)−

∫
P(Xn ∈ S |X0 = x)µ′(dx)

∣∣∣∣
=

∣∣∣∣∫ ∫
P(Xn ∈ S |X0 = x, Yn = y)P(Yn ∈ dy |X0 = x)µ(dx)

−
∫ ∫

P(Xn ∈ S |X0 = x, Yn = y)P(Yn ∈ dy |X0 = x)µ′(dx)
∣∣∣∣

=
∣∣∣∣∫ ∫

P(Xn ∈ S |Yn = y)P(Yn ∈ dy |X0 = x)µ(dx)

−
∫ ∫

P(Xn ∈ S |Yn = y)P(Yn ∈ dy |X0 = x)µ′(dx)
∣∣∣∣

=
∣∣∣∣∫ ∫

f(y)P(Yn ∈ dy |X0 = x)µ(dx)−
∫ ∫

f(y)P(Yn ∈ dy |X0 = x)µ′(dx)
∣∣∣∣

where f(y) = P(Xn ∈ S |Yn = y), so that 0 ≤ f(y) ≤ 1. By (2), this is a difference of

expectations. Hence, from (4), we have∣∣∣P(Xn ∈ S |X0 ∼ µ)−P(Xn ∈ S |X0 ∼ µ′)
∣∣∣ ≤ ‖L(Yn |X0 ∼ µ)− L(Yn |X0 ∼ µ′)‖ .

Since this is true for any S, the result now follows from (3).

For example, we have the following.

Lemma 2. If there are deterministic measurable functions f1, f2, . . . such that Xn =

fn(Yn), then {Yn} is de-initialising for {Xn}.
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Proof. Indeed, in this case

L (Xn |X0, . . . , Xn−1, Yn) = δfn(Yn)(·) ,

which gives the result.

We shall call Markov chains {Xn} and {Yn} co-de-initialising if {Yn} is de-initialising

for {Xn}, and also {Xn} is de-initialising for {Yn}. We immediately have

Corollary 3. If {Xn} and {Yn} are co-de-initialising Markov chains, then for n ≥ 1,

‖L(Xn |X0 ∼ µ)− L(Xn |X0 ∼ µ′)‖ = ‖L(Yn |X0 ∼ µ)− L(Yn |X0 ∼ µ′)‖ .

Say that {Yn} is functionally de-initialising for {Xn} if it is de-initialising and Marko-

vian, and also Yn = hn(Xn) for some deterministic measurable functions hn. Say that

{Yn} is homogeneously functionally de-initialising for {Xn} if in addition we can choose

the same function hn for each n, i.e. {Yn} is Markovian and de-initialising for {Xn}, and

also Yn = f(Xn) for each n.

Now, if the Markov chain {Xn} has a stationary distribution π(·), and if {Yn} is

homogeneously functionally de-initialising for {Xn}, then {Yn} will have stationary distri-

bution f∗π defined by (f∗π)(S) = π
(
f−1(S)

)
. Furthermore, by stationarity we will have

L(Xn |X0 ∼ π) = π(·) and L(Yn |X0 ∼ π) = f∗π(·). It follows from Lemma 2 that {Xn}

and {Yn} are co-de-initialising. Hence, setting µ′ = π in Corollary 3, we obtain

Corollary 4. Let {Xn} be a Markov chain with stationary distribution π(·). Let

Yn = f(Xn) for some measurable function f : X → Y, and suppose that {Yn} is Markovian

and is de-initialising for {Xn}. Then

‖L(Xn |X0 ∼ µ)− π(·)‖ = ‖L(Yn |X0 ∼ µ)− (f∗π)(·)‖ .

That is, we can obtain bounds on convergence rate of a chain to its stationary distri-

bution, in terms of corresponding bounds for a homogeneously functionally de-initialising

chain.
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Remark. Even if {Yn} = {f(Xn)} is not Markovian, it will still be a stationary process

(in the sense of e.g. p. 129 of Bhattacharya and Waymire, 1990), provided that X0 ∼ π(·),

and one can still consider bounds on ‖L(Yn |X0 ∼ µ) − (f∗π)(·)‖. However, in this case

the terminology and notation becomes more cumbersome, and the results become less

interesting, so we do not pursue that here.

We shall also consider certain other notions of de-initialising. Say that {Yn} is back-

ward de-initialising for {Xn} if for n ≥ 1,

L (Xn |X0, X1, . . . , Xn−1, Yn) = L (Xn |Yn) , (5)

i.e. this distribution conditional on the entire history of {Xn} is also a function of Yn only.

(Many, but not all, of our examples of de-initialising Markov chains are also backward

de-initialising.) Say that {Yn} is forward de-initialising for {Xn} if

L(Xn+1, Xn+2, . . . |X0, . . . , Xn, Yn) = L(Xn+1, Xn+2, . . . |Yn) .

Say that {Yn} is totally de-initialising for {Xn} if

L(Xn |X0, . . . , Xn−1, Yn, Xn+1, Xn+2, . . .) = L(Xn |Yn) .

(Obviously, total de-initialising implies both backward and forward de-initialising.)

The logical implications of these various notions of de-initialising are explored in

Section 4 herein.

We shall also use the following.

Proposition 5. Let {Xn} be a Markov chain with transition probabilities P (x, ·).

If we can write P (x, ·) = R(h(x), ·) for some measurable function h : X → Y and some

probability distributions R(y, ·) on X , then {h(Xn−1)} is backward de-initialising for {Xn}.

Furthermore {h(Xn)} is forward de-initialising for {Xn}.
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Proof. We see that

L(Xn |X0, . . . , Xn−1, h(Xn−1)) = R(h(Xn−1), ·)

and hence equals L(Xn |h(Xn−1)). For the second statement, we similarly see that

L(Xn+1, Xn+2, . . . |X0, . . . , Xn, h(Xn)) = L(Xn+1, Xn+2, . . . |h(Xn)) .

The following result illustrates an interesting difference, in general, between the notion

of de-initialising and the classical notion of sufficiency.

Proposition 6. Even if {Yn} is de-initialising for {Xn}, it may be that there is some

sequence {Zn} of random variables such that {(Yn, Zn)} is not de-initialising for {Xn}.

Proof. Let X0, Xn, and Zn be any three random variables which are pairwise in-

dependent but are not independent. Let Yn be identically zero (say). Then by pair-

wise independence, we have L(Xn |X0, Yn) = L(Xn) = L(Xn |Yn), so that {Yn} is in-

deed de-initialising for {Xn}. Now, since Xn is independent of Zn, L(Xn |Yn, Zn) =

L(Xn). On the other hand, since Xn is not independent of the pair (X0, Zn), therefore

L(Xn |X0, Yn, Zn) = L(Xn |X0, Zn) 6= L(Xn). It follows from these two observations that

L(Xn |X0, Yn, Zn) 6= L(Xn |Yn, Zn). Hence, {(Yn, Zn)} is not de-initialising for {Xn}.

On the other hand, if Zn is required to be a function of X0, . . . , Xn−1, and if {Yn} is

backward de-initialising for {Xn}, then clearly so is {(Yn, Zn)}. This corresponds closely

to the situation for classical sufficiency, since there the “statistics” are required to be

functions of the data.
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3. Examples.

Examples of de-initialising Markov chains include:

1. Deterministic functions. If there are deterministic functions f1, f2, . . . such that

Xn = fn(Yn), then by Lemma 2, {Yn} is de-initialising for {Xn}. Thus, Theorem 1

states that to study convergence of {fn(Yn)}, it suffices to study convergence of {Yn}.

In fact, here {Yn} is totally de-initialising for {Xn}.

2. Delayed chain. If Yn = Xmax(0, n−k) for some fixed k ∈ N, then again {Yn} is de-

initialising for {Xn}. In fact, for k ≥ n, we have L(Xn |X0, Yn) = P k(Yn, ·). Indeed,

in this case Theorem 1 corresponds to the well-known statement that

‖L(Xn |X0 ∼ µ)− L(Xn |X0 ∼ µ′)‖ ≤ ‖L(Xn−k |X0 ∼ µ)− L(Xn−k |X0 ∼ µ′)‖ ,

i.e. that total variation distance cannot increase with time. (Note that this example

is not forward de-initialising. Furthermore, it is not backward de-initialising either

unless k = 1.)

3. Two-variable data augmentation (Tanner and Wong, 1984; Gelfand and Smith, 1990;

Rosenthal, 1993). Here there is some target distribution π(·) on a product space

X ×Y, with regular conditional distributions πX|Y (dx|y) and πY |X(dy|x). A Markov

chain {(Xn, Yn)} on X × Y is defined by alternately choosing Yn+1 ∼ πY |X(dy |Xn)

and Xn+1 ∼ πX|Y (dx |Yn+1), for n = 0, 1, 2, . . .. In this case we clearly have

L (Xn |X0, . . . , Xn−1, Yn) = πX|Y (dx |Yn) ,

so that again {Yn} is de-initialising (and backward de-initialising) for {Xn} and also for

{(Xn, Yn)}. Hence, to study convergence of {(Xn, Yn)} it suffices to study convergence

of {Yn}, a fact used in Rosenthal (1993). In this example, it is also true that {Xn} is

forward de-initialising for {(Xn, Yn)}.

In fact, we can write

L ((Xn, Yn) | (Xn−1, Yn−1)) = R(Xn−1, ·)
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for appropriate choice of R(·, ·). Hence, setting h ((Xn, Yn)) = Xn, we can apply

Proposition 5. We conclude that {Xn} is forward de-initialising for {(Xn, Yn)}, and

that {Xn−1} is backward de-initialising for {(Xn, Yn)}.

One example of the use of this property is in the Bayesian analysis of finite

mixtures (see for example Diebolt and Robert, 1994). For these models, the space of

missing data is finite, and therefore the Markov chain consisting of just the missing

data is uniformly ergodic. Furthermore, the missing data is co-de-initialising for the

entire chain. Consequently, by Corollary 3, the data augmentation algorithm is also

uniformly ergodic. This observation was termed the duality principle by Diebolt and

Robert (1994).

4. Pseudo-finite Markov chains, or Markov chains of finite rank (Hoekstra and Steutel,

1984; Runnenburg and Steutel, 1962; Rosenthal, 1992). Here

P (Xn+1 ∈ · |Xn = x) =
m∑

j=1

fj(x) Qj(·)

for some finite number m ∈ N, where fi : X → [0, 1] are deterministic functions

summing to 1, and Qj(·) are fixed probability measures on X . In this case, we can

define a second Markov chain {Yn} on Y = {1, 2, . . . ,m} by P(Y1 = j) = E (fj(X0)),

and

P (Yn+1 = j |Yn = i) = EQi
(fj) .

Then {Yn−1} is de-initialising (in fact, backward de-initialising) for {Xn}. Indeed,

here

L (Xn |X0, . . . , Xn−1, Yn−1) = QYn−1(·) .

Intuitively, Yn keeps track of “which of the Qi distributions the variable Xn is cur-

rently in”. The result of Theorem 1, for the special case of pseudo-finite chains, was

presented in Rosenthal (1992, Proposition 1 (4)). Furthermore, here {Yn} is forward

de-initialising for {Xn}. Thus, interestingly, {Yn} satisfies the conclusions, but not

the hypotheses, of Proposition 5.

5. Slice samplers (Swendsen and Wang, 1987; Besag and Green, 1993; Higdon, 1996;

Damien et al., 1997; Mira and Tierney, 1997; Fishman, 1996; Neal, 1997; Roberts
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and Rosenthal, 1997b, 1999). Let f : X → [0,∞) be a non-negative L1 function,

where X ⊆ Rd and
∫

f dλd > 0. The slice sampler is defined as follows. Given Xn,

we first choose Zn+1 ∈ R uniformly from the interval [0, f(Xn)]. We then choose

Xn+1 uniformly from the set {x ∈ X ; f(x) ≥ Zn+1}. Then the law of Xn converges

(as n → ∞) to the distribution on X having density proportional to f . (In fact,

it is easily checked that the marginal chain {Xn} is reversible with respect to this

distribution.) Such samplers are a common way of approximately sampling from

a high-dimensional density. Corresponding to a slice sampler is a second Markov

chain {Yn} on Y = [0,∞), defined by Yn = f(Xn). Note that Xn is not in general a

deterministic function of Yn since (for d ≥ 2, say) the function f will not be invertible.

However, it is still true that for n ≥ 1 we have

L (Xn |X0, . . . , Xn−1, Yn) = Unif (L(Yn)) ,

where L(y) = {x ∈ X ; f(x) ≥ y} and Unif(R) is the uniform distribution (i.e.,

normalised Lebesgue measure) on the region R. Hence, again, {Yn} is de-initialising

for {Xn}. In fact, here {Yn} is itself Markovian, so that {Yn} is also backward de-

initialising, forward de-initialising, totally de-initialising, and functionally de-initialising;

and {Xn} and {Yn} are co-de-initialising. These facts were used implicitly in the de-

tailed study of slice samplers by Roberts and Rosenthal (1997b, 1999).

6. The Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). Let π(·)

be a probability distribution on Rk. The Gibbs sampler for π is a Markov chain with

transition probabilities given by

P (x, dy) =
k∏

i=1

π(dyi|yj<i,xj>i) .

In this case, we see that x1 does not appear in the formula for P (x, dy). Let

X−i
n−1 ≡ (X1

n, . . . , Xi−1
n , Xi+1

n , . . . , Xk
n). Then by Proposition 5, we see that {X−k

n−1}

is backward de-initialising for {Xn} (a fact used in Rosenthal, 1995, Lemma 7), and

{X−1
n } is forward de-initialising for Xn. The special case k = 2 corresponds to data

augmentation as in Example 3 above.
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Remark. Ideas related to de-initialising also arise in the study of quasi-stationarity.

For example, let {Xs}s≥0 be a continuous-time Markov process. If t > 0 is fixed, and τ

is a stopping time, then to prove weak convergence of L ({Xs}0≤s≤t | τ > T ) to a limiting

distribution, as T →∞, it suffices to prove convergence of L (Xt | τ > T ); see for example

Jacka and Roberts (1997). In the present context, this translates as saying that Xt is

de-initialising for {Xs}0≤s≤t with regards to the event {τ > T}, whenever T ≥ t.

Finally, we note that good examples of the conditional independencies implicit in our

notions of de-initialising can be written in terms of directed graphical models (see for

example Lauritzen, 1996; Whittaker, 1990). We give three examples to illustrate this.

Backward de-initialising is implied by the following graphical model, which describes

the conditional independence structure in e.g. Example 3 (data augmentation) above:

Figure 1. A graphical example of backward de-initialising.

Backward de-initialising is implied by the following graphical model, which describes

the conditional independence structure in e.g. Example 4 (pseudo-finite chain) above, or

Example 6 (the Gibbs sampler) above with Yn = X−1
n .

Figure 2. A graphical example of forward de-initialising.

Finally, total de-initialising would be implied by the following graph, which describes

the dependencies in Example 5 (the slice sampler) above, and which also appears naturally

in the study of hidden Markov models (see e.g. Elliot et al., 1995):

Figure 3. A graphical example of total de-initialising.

Note that the conditional independencies described in the above graphical models are

not required by our various notions of de-initialising.
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4. Relationships between different notions of de-initialising.

We note that if {Yn} is backward de-initialising for {Xn}, then {Yn−1} is automatically

one-step forward de-initialising for {Xn}, meaning that

L(Xn+1 |X0, . . . , Xn, Yn) = L(Xn+1 |Yn)

for n ≥ 1. Indeed, this follows immediately by substituting Yn−1 for Yn in equation (5).

However, this one-step forward de-initialising does not imply forward de-initialising

as we have defined it. For example, let X0, X2, Y0 be three random variables which are

pairwise independent but not three-way independent, and let X1, X3, . . . , Y1, Y2, . . . all be

independent of everything. Then {Xn} is Markovian (in fact, an independent sequence),

but is not Markovian if we first condition on Y0. We then have that L(X1 |X0, Y0) =

L(X1 |Y0), so that {Yn} is indeed one-step forward de-initialising for {Xn}. On the other

hand, L(X2 |Y0) = L(X2), but L(X2 |X0, Y0) 6= L(X2). Hence, {Yn} is not forward de-

initialising for {Xn}.

We also note that if {Yn} is functionally de-initialising for {Xn}, then by Lemma 2

above, {Xn} and {Yn} are co-de-initialising, so that Corollary 3 applies. It also follows

that {Yn} is automatically forward de-initialising for {Xn} as well; this is seen by a direct

application of the Markov property for {Xn}.

We summarise the logical relationships between our various notions of de-initialising

in Figure 4.
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Figure 4. Logical relationships between different notions of de-initialising.

5. Application to diagnosis of convergence.

In many Markov chain Monte Carlo (MCMC) applications, the user attempts to

diagnose convergence of a Markov chain {Xn}N
n=0 to its stationary distribution π(·), by

monitoring a low-dimensional functional. (See for example Gelfand and Smith, 1990;

Cowles and Carlin, 1996; Brooks and Roberts, 1998.)

For example, perhaps the user monitors the values h(Xn) for some function h : X → R.

A quantity often computed is the empirical lag-k autocorrelation, defined for k ∈ N by

EACh,k =
∑N−k

i=1 (h(Xi)−mh)(h(Xi+k)−mh)
(N − k + 1) vh

,

where mh = 1
N

∑N
i=1 h(Xi) and vh = 1

N−1

∑N
i=1 (h(Xi)−mh)2 are the empirical mean

and variance. EACh,k is thus an estimator of the true stationary autocorrelation

ACh,k = corr
(
h(X0), h(Xk)

)
.

under the assumption of stationarity (i.e., with X0 ∼ π).

Now, if EACh,k is, say, rather large for k < 40 and very small for k ≥ 40, then one is

tempted to conclude that the Markov chain converges to stationarity after approximately

40 iterations.

One difficulty with such an approach is that it is far from clear how to choose the

function h for which to compute autocorrelations. It is often the case that for certain

choices of h the autocorrelations will be small, while for other choices of h they will be
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large (see for example Roberts and Rosenthal, 1999). In such cases, one is really interested

in the maximal lag-k autocorrelation defined by

γk = sup
h

∣∣ACh,k

∣∣ , (6)

where the supremum is taken over all choices of nonconstant functions h : X → R having

finite variance under π. However, in practice one is typically forced to approximate γk by

the maximum of ACh,k (or, even, of EACh,k) for a certain finite number of choices of h,

and it is not clear how such choices of h are to be made.

The notion of de-initialising can assist with such choices. In particular, we have the

following.

Theorem 7. Let {Xn} be a Markov chain which is reversible with respect to a stationary

distribution π. Suppose that for some nonconstant function f : X → Y, setting Yn =

f(Xn), we have that {Yn} is Markovian and is a de-initialising chain for {Xn}. Then with

γk as in (6), we have that

γk = sup
g

∣∣ACg◦f,k

∣∣ .

In words, this theorem says that the supremum in (6) is achieved somewhere on the

set of functions of the form h = g◦f , i.e. on a choice of h which depends on x only through

f(x) (alternatively, on a choice of h which is σ(f)-measurable).

In practice, this means that, when choosing functions h to compute autocorrelations,

it suffices to restrict attention to those functions which depend only on the de-initialising

chain {Yn}. For example, if Yn consists of the first few coordinates of Xn, then the functions

h need depend only on those same first few coordinates of Xn.

To prove Theorem 7, we require the following two well-known propositions. To state

them, let Lb(π) be the set of all probability measures µ such that dµ
dπ is an essentially-

bounded function. Also let 〈·, ·〉 be the usual L2(π) inner product, i.e. 〈f, g〉 =
∫

π(dx)f(x)g(x)

for f, g : X → R, and ‖f‖ = 〈f, f〉1/2. Finally, let ‖P0‖ = sup
f∈L2

0(π), ‖f‖=1

‖P0f‖ be the

L2(π) operator norm of the operator P0 defined by

(P0h)(x) = E
(
h(X1) |X0 = x

)
, h ∈ L2

0(π) ,
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where

L2
0(π) =

{
h : X → R ;

∫
π(dy)h(y) = 0,

∫
π(dy)h2(y) < ∞

}
.

Proposition 8. Let {Xn} be a Markov chain on a state space X , which is reversible

with respect to a stationary distribution µ. Let γk be as in (6). Then

γk = ‖P0‖k .

Proof. By shifting and rescaling as necessary, it suffices in the definition of γk to restrict

attention to functions h in the collection

S =
{

h : X → R;
∫

π(dx)h(x) = 0,

∫
π(dx)h2(x) = 1

}
.

For h ∈ S, with X0 ∼ π, we compute that

corr
(
h(X0), h(Xk)

)
= E

(
h(X0) h(Xk)

)
=

∫ ∫
π(dx0)h(x0)P (x0, dxk)h(xk)

=
∫

π(dx0)h(x0)(P k
0 h)(x0)

= 〈h, P k
0 h〉 .

(For similar reasoning see e.g. Amit, 1991.)

Hence, using self-adjointness and Lemma A1 from the Appendix, we conclude that

γk = sup
h

∣∣∣corr
(
h(X0), h(Xk)

)∣∣∣ = sup
h∈S

∣∣∣corr
(
h(X0), h(Xk)

)∣∣∣
= sup

h∈S
|〈h, P k

0 h〉| = sup
h∈S

‖P k
0 h‖ = ‖P k

0 ‖ = ‖P0‖k ,

as claimed.
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Remarks.

1. This proof makes use of the technical result Lemma A1. However, if k is even, then

we can instead write

corr
(
h(X0), h(Xk)

)
= 〈P k/2

0 h, P
k/2
0 h〉 = ‖P k/2

0 h‖2 ,

and the result then follows easily without requiring Lemma A1. (This also shows that

if k is even then corr(h(X0), h(Xk)) ≥ 0.)

2. Similarly, if the spectrum of P0 consists only of pure eigenvalues {λi} with corre-

sponding orthonormal eigenvectors {ei}, then we can decompose h =
∑

i aiei, so that

P k
0 h =

∑
i aiλ

k
i ei. In this case 〈h, h〉 =

∑
i a2

i and
∣∣〈h, P k

0 h〉
∣∣ =

∣∣ ∑
i a2

i λ
k
i

∣∣, while

‖P0‖ = supi |λi|, so that Proposition 8 follows easily. However, in general P0 may

have continuous spectrum, so that the Spectral Theorem is required to make this

approach rigorous.

3. For a related but different result, see Lemma 2.3 of Liu, Wong and Kong (1994).

Proposition 9. Let {Xn} be a Markov chain on a state space X , which is reversible

with respect to a stationary distribution µ. Let γk be as in (6). Then

1
k

log γk = sup
µ∈Lb(π)

lim
n→∞

1
n

log ‖L(Xn |X0 ∼ µ) − π(·)‖ .

(We allow for the special case when both sides equal −∞.)

Proof. We have (see e.g. Theorem 2 of Roberts and Rosenthal, 1997a) that

sup
µ∈Lb(π)

lim
n→∞

1
n

log ‖L(Xn |X0 ∼ µ) − π(·)‖ = log ‖P0‖ ,

with P0 as above. But from Proposition 8, we have that γk = ‖P0‖k, or that (γk)1/k =

‖P0‖. The result follows by taking logs.

Proof of Theorem 7. We note that supg

∣∣ACg◦f,k

∣∣ is the maximal lag-k autocorrelation

for the chain {Yn}. Hence, from Proposition 9,

1
k

log
(

sup
g

∣∣ACg◦f,k

∣∣) = sup
ν∈Lb(f∗π)

lim
n→∞

1
n

log ‖L(Yn |Y0 ∼ ν) − (f∗π)(·)‖ .
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Now, if µ = L(X0) and ν = L(Y0 |X0 ∼ µ) = f∗µ, then for (f∗π)-a.e. y,

dν

d(f∗π)
(y) =

∫
f−1(y)

dµ

dπ
(x) ρ(dx) ,

where ρ(·) = L(X0 |Y0 = y) is the conditional distribution of X0 conditional on being in

the set f−1(y). Informally, dν
d(f∗π) (y) is a “weighted average” of dµ

dπ (x) over x ∈ f−1(y).

Hence, if dµ
dπ ≤ M then dν

d(f∗π) ≤ M . Therefore, L(Y0 |X0 ∼ µ) ∈ Lb(f∗π) whenever

L(X0) ∈ Lb(π).

We conclude that

1
k

log
(

sup
g

∣∣ACg◦f,k

∣∣) ≥ sup
µ∈Lb(π)

lim
n→∞

1
n

log ‖L(Yn |X0 ∼ µ) − (f∗π)(·)‖ .

But then from Corollary 4, it follows that

1
k

log
(

sup
g

∣∣ACg◦f,k

∣∣) ≥ sup
µ∈Lb(π)

lim
n→∞

1
n

log ‖L(Xn |X0 ∼ µ) − π(·)‖ .

Hence, from Proposition 9, we have

1
k

log
(

sup
g

∣∣ACg◦f,k

∣∣) ≥ 1
k

log
(

sup
h

∣∣ACh,k

∣∣) .

We conclude that

sup
g

∣∣ACg◦f,k

∣∣ ≥ sup
h

∣∣ACh,k

∣∣ ,

On the other hand, we clearly have

sup
g

∣∣ACg◦f,k

∣∣ ≤ sup
h

∣∣ACh,k

∣∣ ,

so it follows that

sup
g

∣∣ACg◦f,k

∣∣ = sup
h

∣∣ACh,k

∣∣ ,

as claimed.

As a specific application of Theorem 7, consider the slice sampler of Example 5 above.

In Roberts and Rosenthal (1999), the slice sampler was examined for specific choices of
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the function f , and autocorrelations for a number of different functions h were analysed.

In light of Theorem 7, the only autocorrelation functions that needed to be analysed were

those of the form h = g ◦ f , i.e. those which depended only on the values f(Xn).

6. Partial de-initialising.

Say that {Yn} is partially de-initialising for {Xn} on {Cn}, if there are events {Cn}

such that

P (Xn ∈ A |X0, Yn) = P (Xn ∈ A |Yn) on Cn (w.p. 1) .

Theorem 10. Let {Yn} be partially de-initialising for {Xn} on {Cn}. Then for any

initial distributions µ and µ′,

‖L(Xn |X0 ∼ µ)− L(Xn |X0 ∼ µ′)‖ ≤ ‖L(Yn |X0 ∼ µ)− L(Yn |X0 ∼ µ′)‖+ P(CC
n ) ,

Proof. We have that

|P(Xn ∈ S |X0 ∼ µ)−P(Xn ∈ S |X0 ∼ µ′)|∣∣∣∣∫ P(Xn ∈ S |X0 = x)µ(dx)−
∫

P(Xn ∈ S |X0 = x)µ′(dx)
∣∣∣∣

=
∣∣∣∣∫ ∫

Cn∪CC
n

P(Xn ∈ S |X0 = x, Yn = y)P(Yn ∈ dy |X0 = x)µ(dx)

−
∫ ∫

Cn∪CC
n

P(Xn ∈ S |X0 = x, Yn = y)P(Yn ∈ dy |X0 = x)µ′(dx)
∣∣∣∣

≤
∣∣∣∣∫ ∫

Cn

P(Xn ∈ S |Yn = y)P(Yn ∈ dy |X0 = x)µ(dx)

−
∫ ∫

Cn

P(Xn ∈ S |Yn = y)P(Yn ∈ dy |X0 = x)µ′(dx)
∣∣∣∣

+
∣∣∣∣∫ ∫

CC
n

P(Xn ∈ S |Yn = y)P(Yn ∈ dy |X0 = x)µ(dx)

−
∫ ∫

CC
n

P(Xn ∈ S |Yn = y)P(Yn ∈ dy |X0 = x)µ′(dx)
∣∣∣∣

≤
∣∣∣∣∫ ∫

f(y)P(Yn ∈ dy |X0 = x)µ(dx)−
∫ ∫

f(y)P(Yn ∈ dy |X0 = x)µ′(dx)
∣∣∣∣ + P(CC

n )

19



where f(y) = 1Cn(y)P(Xn ∈ S |Yn = y), so that 0 ≤ f(y) ≤ 1. The result now follows

just like for Theorem 1.

One special case is Cn = {τ ≤ n}, where τ is a stopping time for {Xn}. [In fact, usual

de-initialising corresponds to C0 = ∅ and Cn = Ω for n ≥ 1, i.e. Cn = {τ ≤ n} where

τ ≡ 1.]

For example, consider the independence sampler, which is defined in terms of a target

density π and a proposal density q. Given Xn, it chooses (conditionally independently)

Zn+1 ∼ q(z) dz. It then either “accepts” Zn+1 (i.e., sets Xn+1 = Zn+1) with probability

min (1, π(Zn+1)q(Xn) / π(Xn)q(Zn+1)), or else “rejects” Zn+1 (i.e. sets Xn+1 = Xn) with

the remaining probability.

Given an independence sampler {Xn}, let τ be the first time that the sampler accepts

a proposed move, and let Yn = q(Xn)/π(Xn). Then it is straightforward to see that {Yn}

is partially de-initialising for {Xn} on {τ ≤ n}. Furthermore, clearly P(τ ≤ n) = (1−α)n

where α is the probability that the sampler accepts Z1. We thus obtain from Theorem 10:

Corollary 11. Let {Xn} be an independence sampler relative to a target density π

and a proposal density q. Let τ be the first time the sampler accepts a proposed move,

and let α = P(τ = 1) be the probability that the first proposed move is accepted. Let

Yn = q(Xn)/π(Xn), and let ν(·) be the corresponding stationary distribution of {Yn}.

Then

‖L(Xn |X0 ∼ µ)− π(·)‖ ≤ ‖L(Yn |X0 ∼ µ)− ν‖+ (1− α)n .

Now, for large n the correction term (1−α)n will typically be quite small. Hence, the

total variation distance bounds on {Yn} are very close to corresponding bounds on {Xn}.

Remark. It would also be possible to consider partial future de-initialising, partial

functional de-initialising (e.g. the independence sampler), partial backward de-initialising

(again e.g. the independence sampler), etc., but we do not pursue those notions here.
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Appendix: An Operator Theory Lemma.

The proof of Proposition 8 requires the following well-known technical property of

self-adjoint operators.

Lemma A1. Let H be any self-adjoint operator on any real or complex Hilbert space H.

Then

sup
f∈H
‖f‖=1

∣∣〈f,Hf〉
∣∣ = ‖H‖ .

Proof. Clearly sup
‖f‖=1

∣∣〈f,Hf〉
∣∣ ≤ ‖H‖, so it suffices to find a sequence {gn} of vectors

with ‖gn‖ = 1 and |〈gn,Hgn〉| → ‖H‖.

By the definition of ‖H‖, we can find a sequence of vectors {fn} with ‖fn‖ = 1 and

‖Hfn‖ → ‖H‖. But then we compute that∥∥H2fn − ‖H‖2fn

∥∥2 =
〈
H2fn − ‖H‖2fn, H2fn − ‖H‖2fn

〉
= ‖H2fn‖2 − 2 ‖H‖2 〈H2fn, fn〉+ ‖H‖4

= ‖H2fn‖2 − 2 ‖H‖2 〈Hfn, Hfn〉+ ‖H‖4

= ‖H2fn‖2 − 2 ‖H‖2 ‖Hfn‖2 + ‖H‖4

≤ ‖H‖2 ‖Hfn‖2 − 2 ‖H‖2‖Hfn‖2 + ‖H‖4

→ ‖H‖2 ‖H‖2 − 2 ‖H‖2 ‖H‖2 + ‖H‖4

= 0 .

That is, H2fn − ‖H‖2fn → 0.

Now,

H2fn − ‖H‖2fn =
(
H + ‖H‖I

)(
H − ‖H‖I

)
fn

(where I is the identity operator). To make use of the fact that this approaches 0, we note

that we must have either (a)
(
H−‖H‖I

)
fn → 0, or (b) ‖

(
H−‖H‖I

)
fn‖ ≥ ε for infinitely

many n and some fixed ε > 0.

In case (a), we set gn = fn to obtain that 〈gn, (H − ‖H‖I)gn〉 → 0, so that

〈gn, Hgn〉 → ‖H‖, as desired.

In case (b), we restrict to those n with ‖
(
H − ‖H‖I

)
fn‖ ≥ ε, and set gn = (H −

‖H‖I)fn / ‖(H−‖H‖I)fn‖. We then obtain that ‖gn‖ = 1, and that 〈gn, (H+‖H‖I)gn〉 →
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0, so that 〈gn, Hgn〉 → −‖H‖. The result then follows by taking absolute values.

Remarks.

1. In operator theory, the quantity sup
‖f‖=1

∣∣〈f,Hf〉
∣∣ is referred to as the numerical radius

of H.

2. Lemma A1 is false if H is not required to be self-adjoint. For example, let H

be the operator on R2 which rotates each vector clockwise by 90 degrees. Then

sup‖f‖=1

∣∣〈f,Hf〉
∣∣ = 0 even though ‖H‖ = 1.

3. Lemma A1 is often stated over a complex Hilbert space. However, for our purposes

we need the result over a real Hilbert space. In the context of the present paper,

a complex Hilbert space corresponds to the supremum (6) including correlations of

complex-valued functions with their complex conjugates. Indeed, on a complex Hilbert

space, Lemma A1 is true within a factor of 2 even if H is not self-adjoint; see e.g.

Halmos (1951), page 33. However, note the explicit use of i =
√
−1 in Halmos’s proof,

which is why his result does not hold on a real Hilbert space (cf. the previous remark).
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