
OPTIMAL SCALING OF RANDOM-WALK METROPOLIS

ALGORITHMS ON GENERAL TARGET DISTRIBUTIONS

JUN YANG1, GARETH O. ROBERTS2, AND JEFFREY S. ROSENTHAL1

Abstract. One main limitation of the existing optimal scaling results for Metropolis–
Hastings algorithms is that the assumptions on the target distribution are unrealistic. In
this paper, we consider optimal scaling of random-walk Metropolis algorithms on general
target distributions in high dimensions arising from practical MCMC models from Bayesian
statistics. For optimal scaling by maximizing expected squared jumping distance (ESJD),
we show the asymptotically optimal acceptance rate 0.234 can be obtained under general
realistic sufficient conditions on the target distribution. The new sufficient conditions
are easy to be verified and may hold for some general classes of MCMC models arising
from Bayesian statistics applications, which substantially generalize the product i.i.d.
condition required in most existing literature of optimal scaling. Furthermore, we show
one-dimensional diffusion limits can be obtained under slightly stronger conditions, which
still allow dependent coordinates of the target distribution. We also connect the new
diffusion limit results to complexity bounds of Metropolis algorithms in high dimensions.
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1. Introduction

Markov chain Monte Carlo (MCMC) algorithms [BGJM11; GRS95; Liu08; MT12; RC04]
are now routinely used in many fields to obtain approximations of integrals that could not
be tackled by common numerical methods, because of the simplicity and the scalability
to high-dimensional settings. The running times of MCMC algorithms are an extremely
important issue of practice. They have been studied from a variety of perspectives, including
convergence “diagnostics” via the Markov chain output [GR92], proving weak convergence
limits of sped-up versions of the algorithms to diffusion limits [RGG97; RR98], directly
bounding the convergence in total variation distance [MT94; Ros95; Ros96; RT99; JH01;
Ros02; JH04; Bax05; FHJ08], and non-asymptotic guarantees when the target distribution
has a smooth and log-concave density, e.g. [BREZ18; Dal17; DCWY18; DK19] and the
references therein.

The optimal scaling framework [RGG97; RR98; RR01] is one of the most successful
and practically useful ways of performing asymptotic analysis of MCMC methods in high-
dimensions. Optimal scaling results (e.g. [CRR05; NR06; Béd08; BR08; NR08; NR11;
NRY12; JLM15; JLM14; RR14; ZBK17]) facilitate optimization of MCMC performance by
providing clear and mathematically-based guidance on how to tune the parameters defining
the proposal distribution for Metropolis–Hastings algorithms [MRRT+53; Has70]. For
instance, classical results include tuning the acceptance probabilities to 0.234 for random-
walk Metropolis algorithm (RWM) [RGG97] and 0.574 for Metropolis-adjusted Langevin
algorithm (MALA) [RR98]. Moreover, optimal scaling results have been used to analyze
and compare a wide variety of MCMC algorithms, such as Hamiltonian Monte Carlo (HMC)
[BPRSS+13], Pseudo-Marginal MCMC [STRR15], multiple-try MCMC [BDM12]. This
yields guidance which is widely used by practitioners, especially via self-tuning or Adaptive
MCMC methodologies [AT08; Ros11].

In the original paper, Roberts, Gelman, and Gilks [RGG97] dealt with the RWM algorithm
starting in stationarity for target distributions which have i.i.d. product forms. The i.i.d.
condition for the target and the assumption for the chain to start in stationarity are two
main limitations of the optimal scaling framework. Particularly, the product i.i.d. condition
is very restrictive. From a practitioner’s perspective, target distributions of the i.i.d. forms
are too limited a class of probability distributions to be useful, since they can be tackled by
sampling a single one-dimensional target due to the product structure. To this day, optimal
scaling results have mainly been proved for target distributions with a product structure,
which severely limits their applicability. On the other hand, practitioners use these tuning
criteria far outside the class of target distributions of product i.i.d. forms. For example,
extensive simulations [RR01; SFR10] show that these optimality results also hold for more
complex target distributions.

There exists only a few extensions for correlated targets and most of them are derived
for very specific models. For example, Breyer and Roberts [BR00] studied target densities
which are Gibbs measures and Roberts and Rosenthal [RR01] studied inhomogeneous target
densities. Breyer, Piccioni, and Scarlatti [BPS04] studied target distributions arising in
nonlinear regression and have a mean field structure. Neal and Roberts [NR06] considered
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the case where updates of high-dimensional Metropolis algorithms are lower dimensional than
the target density itself. Later, Bédard and Rosenthal [BR08] studied independent targets
with different scales (see also [Béd07; Béd08]) and Bédard [Béd19] studied a special family
of hierarchical target distributions. Neal and Roberts [NR08] studied spherically constrained
target distributions and non-Gaussian proposals [NR11]. Sherlock and Roberts [SR09]
considered elliptically symmetric unimodal targets. Neal, Roberts, and Yuen [NRY12] studied
densities with bounded support. Durmus, Le Corff, Moulines, and Roberts [DLCMR17]
considered target distributions which are differentiable in Lp mean. Recently, Mattingly,
Pillai, and Stuart [MPS12] studied diffusion limits for a class of high-dimensional measures
found from the approximation of measures on a Hilbert space which are absolutely continuous
with respect to a Gaussian reference measure (See also [PST12; BRS09; BRSV08; CRSW13]).
Important examples of this scenario required by [MPS12] in uncertainty quantification
problems are given in [HSV11; Stu10; CDPS18]. However, in this paper we shall concentrate
on the situation where absolute continuity with respect to a Gaussian is not a reasonable
assumption, as is the case in many Bayesian statistics applications.

Furthermore, we do not consider the transient phase of the Metropolis–Hasting algorithms
in this paper. The transient phase of high-dimensional Metropolis–Hasting algorithms are
studied for example in [CRR05; JLM14; JLM15; KOS18; KOS19]. Kuntz, Ottobre, and
Stuart [KOS19] studied the RWM algorithm starting out of stationarity in the settings of
[MPS12; JLM15] when non-product target distributions are defined in a Hilbert space being
absolute continuous with respect to some Gaussian measures. Such target distributions in
[KOS19] can arise for example in Bayesian nonparametric settings, but not in many other
Bayesian statistics applications which we focus on in this paper.

In this paper, we consider optimal scaling of RWM algorithms on general target distribu-
tions in high dimensions arising from practical MCMC models in Bayesian statistics. First,
for optimal scaling by maximizing expected squared jumping distance (ESJD), we show
the asymptotically optimal acceptance rate 0.234 can be obtained under general sufficient
conditions on the target distribution. Very briefly speaking, 0.234 is asymptotically optimal
if (i) each coordinate of the Markov chain is only strongly dependent with a subset of other
coordinates (see assumptions A1 and A3); (ii) the target distribution satisfies some smooth-
ness conditions (see assumptions A2 and A4); (iii) as the dimension goes to infinity, a key
quantity of “roughness” of the target concentrates to a nonzero value (see assumption A5).
The new sufficient conditions are easy to check in practice and may hold for some general
classes of practical MCMC models. Our results substantially generalize the commonly used
product i.i.d. condition. Furthermore, we show one-dimensional diffusion limits can also
be obtained under relaxed conditions which still allow dependent coordinates of the target
distribution. Finally, we also connect the new results of diffusion limits to complexity bounds
of RMW algorithms in high dimensions. Note that although the whole paper is focused on
RWM algorithm, we believe the technical proofs in this paper can be used to relax restrictive
conditions on the target distribution for more general Metropolis algorithms.

The paper is organized as follows. In Section 2, we give a brief background review of
optimal scaling for Metropolis–Hastings algorithms and complexity bounds via diffusion
limits. In Section 3, we present our main results, which include three parts: optimal
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scaling by maximizing ESJD, optimal scaling via diffusion limits, and complexity bounds
via diffusion limits. In Section 4, we demonstrate the new optimal scaling result holds for
some useful MCMC models. In Appendix A, we prove Theorem 3.10, which is one of our
main results. The proofs of lemmas used for proving Theorem 3.10 and other main results,
such as Theorems 3.19 and 3.21, are delayed to Appendices B to D.

2. Background on Optimal Scaling

Practical implementations of Metropolis–Hastings algorithms suffer from slow mixing for
at least two reasons: the Markov chain moves very slowly to the target distribution when
the proposed jumps are too short; the Markov chain stays at a state for most of the time
when the proposed jumps are long but the chain ends up in low probability areas of the
target distribution. The optimal scaling problem [RGG97] considers the choice of proposed
distribution to optimize mixing of the Metropolis–Hastings algorithm. We focus on one
of the most popular MCMC algorithms, the RWM algorithm. This algorithm proceeds
by running a Markov chain {Xd(t), t = 0, . . . ,∞} as follows. Given a target distribution
πd on the state space Rd and the current state Xd(t) = xd, a new state is proposed by
Y d ∼ N (xd, σ2dI), which is sampled from a multivariate Gaussian distribution centered at xd,

then the proposal is accepted with probability min{1, πd(Y d)/πd(xd)} so that Xd(t+1) = Y d.
Otherwise the proposal is rejected and Xd(t + 1) = xd. This is precisely to ensure the
Markov chain is reversible with respect to the target distribution πd. It can be shown that
the normal proposals automatically make the RWM algorithm πd-irreducible, aperiodic, and
hence ergodic [RS94; MT96]. Therefore, it will converge asymptotically to πd in law. Note
that the only computational cost involved in calculating the acceptance probabilities is the
relative ratio of densities. Within the class of all Metropolis–Hastings algorithms, the RWM
algorithm is still widely used in many applications because of its simplicity and robustness.

2.1. Optimal Scaling via Diffusion Limits. The most common technique to prove
optimal scaling results is to show a weak convergence to diffusion limits as the dimension of
a sequence of target densities converges to infinity [RGG97; RR98]. More specifically, even
though different coordinates of the Markov chain are not independent nor even individually
Markovian, when the proposal is appropriately scaled according to the dimension, the
sequence of sped-up stochastic processes formed by one fixed coordinate of each Markov
chain converges to an appropriate Markovian Langevin diffusion process. The limiting
diffusion limit admits a straightforward efficiency maximization problem which leads to
asymptotically optimal acceptance rate of the proposed moves for the Metropolis–Hastings
algorithm. In [RGG97], the target distribution πd is assumed to be an d-dimensional product
density with respect to Lebesgue measure, that is

πd(xd) =
d∏
i=1

f(xi), (1)

where xd = (x1, x2, . . . , xd). It is shown that with the choice of scaling σ2d = `2/(d − 1)
for some fixed ` > 0, individual components of the resulting Markov chain converge to
the solution of a stochastic differential equation (SDE). More specifically, denoting Xd =
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(Xd
1 , X

d
2 , . . . , X

d
d ), the first coordinate of the RWM algorithm, Xd

1 , sped up by a factor of d,

i.e. {Xd
1 (bdtc), t = 0, 1, . . . }, converges weakly in the usual Skorokhod topology to a limiting

ergodic Langevin diffusion.

Proposition 2.1. [RGG97, Theorem 1.1] Suppose density f satisfies that f ′/f is Lipschitz
continuous and ∫ [

f ′(x)

f(x)

]8
f(x)dx <∞,

∫ [
f ′′(x)

f(x)

]4
f(x)dx <∞. (2)

Then for Ud(t) := Xd
1 (bdtc), as d→∞, we have Ud ⇒ U , where⇒ denotes weak convergence

in Skorokhod topology, and U satisfies the following Langevin SDE

dU(t) = (h(`))1/2dB(t) + h(`)
f ′(U(t))

2f(U(t))
dt, (3)

with h(`) := 2`2Φ(−`
√
Ĩ/2) is the speed measure for the diffusion process, Ĩ :=

∫ [f ′(x)
f(x)

]2
f(x)dx,

and Φ being the standard Gaussian cumulative density function.

This weak convergence result leads to the interpretation that, started in stationarity and
applied to target measures of the i.i.d. form, the RWM algorithm will take on the order of d
steps to explore the invariant measure. Furthermore, it may be shown that the value of `
which maximizes the speed measure h(`) and, therefore, maximizes the speed of convergence
of the limiting diffusion, leads to a universal acceptance probability, for the RWM algorithm
applied to targets of i.i.d. forms, of approximately 0.234. Proposition 2.1 is proved in
[RGG97] using the generator approach [EK86]. The same method of proof has also been
applied to derive optimal scaling results for other types of MCMC algorithms: for example,
the convergence of MALA to diffusion limits when σ2d = `2/d1/3 (see e.g. [RR98; RR01;
BPS04; CRR05; NR06]) with asymptotically optimal acceptance rate 0.574.

2.2. Optimal Scaling by maximizing ESJD. Another popular technique to prove opti-
mal scaling is by maximizing expected squared jumping distance (ESJD) [PG10; ARR11;
RR14], which is defined as follows.

Definition 2.2. (Expected Squared Jumping Distance)

ESJD(d) :=EXd∼πdEY d
[
‖Y d −Xd‖2

(
1 ∧ π

d(Y d)

πd(Xd)

)]
(4)

where the expectation over Y d is taken for Y d ∼ N (xd, `2

d−1I) for given Xd = xd, and ‖ · ‖
denotes the Euclidean distance, i.e. ‖Y d −Xd‖2 =

∑d
i=1(Yi −Xi)

2.

Choosing a proposal variance to maximize ESJD is equivalent to minimizing the first-order
auto-correlation of the Markov chain, and thus maximizing the efficiency if the higher order
auto-correlations are monotonically increasing with respect to the first-order auto-correlation
[PG10]. Furthermore, if weak convergence to a diffusion limit is established, then the ESJD
converges to the quadratic variance of the diffusion limit. This suggests that maximizing
the ESJD is a reasonable problem. For example, Atchadé, Roberts, and Rosenthal [ARR11]
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considered to maximize the ESJD to choose optimal temperature spacings for Metropolis-
coupled Markov chain Monte Carlo and simulated tempering algorithms. Later, Roberts and
Rosenthal [RR14] proved a diffusion limit for the simulated tempering algorithms. Using a
new comparison of asymptotic variance of diffusions, Roberts and Rosenthal [RR14] showed
the results in the choice of temperatures in [ARR11] does indeed minimize the asymptotic
variance of all functionals. Another example is the optimal scaling result for HMC, with
asymptotically optimal acceptance rate 0.651 when σ2d = `2/d1/4 [BPRSS+13], is proven by
maximizing the ESJD.

Although establishing weak convergence of diffusion limits gives stronger guarantee than
maximizing ESJD, the price to pay is to require stronger conditions on the target distribution.
Maximizing ESJD instead can lead to (much) weaker conditions on the target distribution.
Later in this paper, we will show that we are able to relax the restrictive product i.i.d.
condition on the target distribution for both cases. In particular, the new sufficient conditions
on the target distribution for maximizing ESJD are weak enough to allow target distributions
arising from realistic MCMC models.

2.3. Background on Complexity Bounds. Because of the big data world, in recent years,
there is much interest in the “large d, large n” or “large d, small n” high-dimensional regime,
where d is the number of parameters and n is the sample size. Rajaratnam and Sparks
[RS15] use the term convergence complexity to denote the ability of a high-dimensional
MCMC scheme to draw samples from the posterior, and how the ability to do so changes as
the dimension of the parameter set grows. This requires the study of computer-science-style
complexity bounds [Cob65; Coo71] in terms of running time complexity order as the “size”
of the problem goes to infinity. In the Markov chain context, computer scientists have been
bounding convergence times of Markov chain algorithms focusing largely on spectral gap
bounds for Markov chains [SJ89; LV03; Vem05; LV06; WSH09a; WSH09b]. In contrast,
statisticians usually study total variation distance or other metric for MCMC algorithms.
In order to bridge the gap between statistics-style convergence bounds, and computer-
science-style complexity results, in one direction, Yang and Rosenthal [YR17] recently
show that complexity bounds for MCMC can be obtained by quantitative bounds using
a modified drift-and-minorization approach. In another direction, Roberts and Rosenthal
[RR16] connect existing results on diffusion limits of MCMC algorithm to the computer
science notion of algorithm complexity. The main result in [RR16] states that any weak limit
of a Markov process implies a corresponding complexity bound in an appropriate metric.
More specifically, Roberts and Rosenthal [RR16] connect the diffusion limits to complexity
bound using the Wasserstein metric. Let (X ,F , ρ) be a general measurable metric space, the
distance of a stochastic process {X(t)} on (X ,F) to its stationary distribution π is defined
by the KR distance

‖Lx(X(t))− π‖KR := sup
g∈Lip11

|E[g(X(t))]− π(g)| (5)

where Lx(X(t)) denotes the law of X(t) conditional on starting at X(0) = x, π(g) :=∫
g(x)π(dx) is the expected value of g with respect to π, ‘KR’ stands for ‘Kantorovich–

Rubinstein’, and Lip1
1 is the set of all functions g from X to R with Lipschitz constant no
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larger than 1 and with |g(x)| ≤ 1 for all x ∈ X , i.e.

Lip1
1 := {g : X → R, |g(x)− g(y)| ≤ ρ(x, y),∀x, y ∈ X , |g| ≤ 1}. (6)

Note that the KR distance defined in Eq. (5) is exactly the 1-st Wasserstein metric. Then it
can be shown that the π-average of the KR distance to stationarity from all initial states
X(0) in X is non-increasing, which leads to the following complexity linking proposition.

Proposition 2.3. [RR16, Theorem 1] Let Xd = {Xd(t), t ≥ 0} be a stochastic process on
(X ,F , ρ), for each d ∈ N. Suppose Xd converges weakly in the Skorokhod topology as d→∞
to a càdlàg process X∞. Assume these processes all have the same stationary distribution π
and that X∞ converges weakly to π. Then for any ε > 0, there are D <∞ and T <∞ such
that

EXd(0)∼π‖LXd(0)(X
d(t))− π‖KR < ε, ∀t ≥ T, d ≥ D. (7)

Proposition 2.3 allows us to bound the convergence of the sequence of processes uniformly
over all sufficiently large d, if the sequence of Markov processes converges weakly to a limiting
ergodic process. Combining Proposition 2.3 with previously-known MCMC diffusion limit
results, Roberts and Rosenthal [RR16] prove that the RWM algorithm in d dimensions takes
O(d) iterations to converge to stationarity. However, in [RR16], the target distribution needs
to be product i.i.d. with density satisfies all the assumptions of Proposition 2.1. Furthermore,
the condition Eq. (2) is replaced by a stronger condition∫ [

f ′(x)

f(x)

]12
f(x)dx <∞,

∫ [
f ′′(x)

f(x)

]6
f(x)dx <∞. (8)

3. Main Results

In this section, we show our main results on optimal scaling of RWM algorithms on
general target distributions. We first consider optimal scaling by maximizing ESJD in
Section 3.1. We show asymptotic form of the ESJD in Theorem 3.10 under very mild
conditions on the target distribution. Then we show in Theorem 3.13 that if we directly
maximize the asymptotic ESJD, we can obtain 0.234 as an upper bound of the asymptotically
optimal acceptance rate. Next, we show the acceptance rate 0.234 is asymptotically optimal
under one more weak law of large number (WLLN) condition on the target distribution in
Theorem 3.14. In order to give the reader a brief idea that to what extend the class of target
distributions can be enlarged. We first present an example of a non-product non-i.i.d. class
of distributions, which is a straightforward corollary of our main result in Theorem 3.14.
Note that our main result includes much more general class of distributions that this simple
example. Recall that a (probabilistic) graphical model is a family of probability distributions
defined in terms of a directed or undirected graph [Jor04]. Suppose that the statistical model
can be represented as a graphical model, then we have the following corollary.

Corollary 3.1. (A Simple Corollary of Theorem 3.14) If the following three conditions hold,
0.234 is indeed the asymptotic acceptance rate: (i) in the graph representation, each node of

the graph has at most o(d1/4) links; (ii) the target density πd is bounded and log πd has up to
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the third bounded partial derivatives; (iii) for Xd ∼ πd, 1
d

∑d
i=1

(
∂
∂xi

log πd(Xd)
)2

converges

to a positive constant as d→∞.

In Section 3.2, we consider optimal scaling via diffusion limits. We prove the new conditions
for weak convergence to diffusion limits in Theorem 3.19. We then strengthen this result
to consider fixed starting state in Theorem 3.21. Finally, in Section 3.3, we apply our new
result on diffusion limits with fixed starting state to obtain complexity bounds for the RMW
algorithm, which is given in Corollary 3.23.

Before presenting our main results, we first define a sequence of “sets of typical states”.

Definition 3.2. We call {Fd} a sequence of “sets of typical states” if πd(Fd)→ 1.

Next, we enlarge {Fd} in different ways, which will be used later for the new conditions
on the target.

Definition 3.3. For a given sequence of “sets of typical states” {Fd}, we define

F
(i)
d := {(x1, . . . , xi−1, y, xi+1, . . . , xd) : ∃(x1, . . . , xd) ∈ Fd, such that |y − xi| <

√
log d/d}.

(9)

Furthermore, we define F+
d :=

⋃d
i=1 F

(i)
d .

Remark 3.4. It is clear from the definitions that F
(i)
d is to enlarge the i-th coordinate of

xd ∈ Fd by covering it with an open interval (xi −
√

log d/d, xi +
√

log d/d); F+
d is the

union of F
(i)
d , i = 1, . . . , d. Then clearly we have Fd ⊆ F

(i)
d ⊆ F

+
d . In practice, the difference

between F+
d and Fd is usually asymptotically ignorable in high dimensions. /

Finally, we introduce the idea of “neighborhoods” of a coordinate, which is later used
to capture the correlation among different coordinates. We use Hi to denote a collection
of coordinates which are called “neighborhoods” of coordinate i. That is, Hi ⊆ {1, . . . , d}.
We also assume i ∈ Hi. Although the definition of the set Hi is quite arbitrary, we expect
that j ∈ Hi implies the coordinates i and j are correlated even conditional on all other
coordinates. This idea of “neighborhoods” become clearer if the target distribution comes
from a model which can be written as a probabilistic graphical model [Jor04]. For a graphical
model, it is convenient to define the “neighborhood” j ∈ Hi if there is an edge between
nodes i and j. In this definition, clearly j /∈ Hi implies that the two coordinates i and j are
conditional independent given all the other d− 2 coordinates.

3.1. Optimal Scaling for Maximizing ESJD. Suppose {Fd} is a sequence of “sets of
typical states” and {Hi} are collections of “neighborhoods” for each coordinate. Throughout
the paper, we assume supi∈{1,...,d} |Hi| < ld where ld = o(d).

Remark 3.5. For graphical models, if we define Hi as the collection of nodes that is directly
connected to i by an edge, then ld = o(d) rules out “dense graphs” for which ld ∝ d. /

Now we introduce the first assumption A1 on the target πd.

sup
(i,j):j /∈Hi

sup
xd∈F+

d

∂2 log πd(xd)

∂xi∂xj
= o(1), sup

(i,j):j∈Hi
sup
xd∈F+

d

∂2 log πd(xd)

∂xi∂xj
= o(

√
d/ld). (A1)
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Remark 3.6. For graphical models, if node i is not directly connected to node j, we always

have ∂2 log πd(xd)
∂xi∂xj

= 0. Therefore, in order to make A1 hold, it suffices to check for each edge

of the graph, say (i, j), that ∂2 log πd(xd)
∂xi∂xj

= o(
√
d/ld). Since we have assumed ld = o(d), this

is a very weak condition. For example, A1 holds for all graphical models with bounded
second partial derivatives. /

Next, we denote the conditional density of the i-th and j-th coordinates, given all the
other coordinates fixed, by πi,j|−i−j := πd(xi, xj |x−i−j) where x−i−j with i < j denotes all

coordinates of xd other than the i-th, and j-th coordinates, i.e.

x−i−j := (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xd).

Note that πi,j|−i−j is a probability measure in R2. Then we introduce the next assumption
A2 on the target as follows.

sup
(i,j):j /∈Hi

sup
{x−i−j :xd∈Fd}

∫
∂2πi,j|−i−j

∂x2i

∂2πi,j|−i−j

∂x2j

1

πi,j|−i−j
dxidxj = o(1). (A2)

Remark 3.7. The assumption A2 is very weak, since it is only to require that the target has
a “flat tail”. To see this, consider the target distribution πd has the special i.i.d. product
form of Eq. (1), then A2 reduces to∫

∂2f(xi)f(xj)

∂x2i

∂2f(xi)f(xj)

∂x2j

1

f(xi)f(xj)
dxidxj =

(∫
d2f(x)

dx2
dx

)2

= 0, (10)

when f has a “flat tail” so that df(x)
dx → 0 when |x| → ∞. Similarly, for graphi-

cal models, if there is no edge between i and j, then when πd has “flat tail” we have∫ ∂2πi,j|−i−j
∂x2i

∂2πi,j|−i−j
∂x2j

1
πi,j|−i−j

dxidxj = 0. /

The next assumption is about conditions on the third partial derivatives.

sup
(i,j):j /∈Hi

sup
xd∈Rd

∂3 log πd(xd)

∂x2i ∂xj
= o(1), sup

(i,j):j∈Hi
sup
xd∈Rd

∂3 log πd(xd)

∂x2i ∂xj
= o(d/ld),

sup
i

sup
xd∈Rd

∂3 log πd(xd)

∂x3i
= o(d1/2),

∑
i 6=j 6=k

(
sup
xd∈Rd

∣∣∣∣∂3 log πd(xd)

∂xi∂xj∂xk

∣∣∣∣
)

= o(d3/2).

(A3)

Remark 3.8. We consider graphical models that satisfy A3. The first three equations of
A3 are similar to A1 and they hold for all graphical models with bounded third partial
derivatives. Recall that, in graph theory, a n-clique of a graph is a fully-connected subset of
nodes of the graph with cardinality n. The last equation of A3 then involves the number
of 3-cliques in the graph. Note that for many realistic hierarchical models, there are no

3-cliques for the corresponding graphs, which implies
∑

i 6=j 6=k

∣∣∣∂3 log πd(xd)∂xi∂xj∂xk

∣∣∣ = 0. Even for the
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worst case, considering a graph that has d nodes and each has ld neighbors, since there are
dld/2 links, the number of 3-cliques is at most

(
ld
2

)
d/3 = O(l2dd). Therefore, A3 holds for

any graphical model with ld = o(d1/4) and bounded third partial derivatives. /

The next assumption is the last assumption before our first main result. We first define a
quantity which measures the “roughness” of log πd.

Id(x
d) :=

1

d

d∑
i=1

(
∂

∂xi
log πd(xd)

)2

. (11)

Similarly, we can consider Id(X
d) where Xd ∼ πd as a random variable. Later we will see

that it turns out that Id(X
d) is a key quantity for optimal scaling results. Assumption A4

is as follows.
There exists α with 0 < α < 1/2 such that

sup
i

sup
xd∈F (i)

d

∂ log πd(xd)

∂xi
= O(dα), sup

xd∈F+
d

πd(xd) = o(d1/2−α), sup
xd∈F+

d

1/Id(x
d) = O(dα/2).

(A4)

Remark 3.9. For A4, the first two conditions do not even require πd and the first par-
tial derivative of log πd to be bounded. Thus, they are quite weak. For the last condi-
tion, although the mode of πd is ruled out from F+

d , the condition can hold as long as

supi sup
xd∈F (i)

d

∂ log πd(xd)
∂xi

= O(dα/2) and Id(X
d) is tight. That is, ∀0 < ε < 1, there exists

Kε > 0 such that P(Id(X
d) > Kε) < 1 − ε). To see this, one can choose Fd using the

tightness such that supxd∈Fd 1/Id(x
d) = O(dα/2). Then we can replace Fd by F+

d since

infxd∈Fd Id(x
d) − infxd∈F+

d
Id(x

d) = O(dα/2(log d)1/2d−1/2) = o(d−1/4) = o(d−α/2). Note

that Id(X
d) being tight is a very reasonable assumption, since if Id(X

d) is not tight, the
target πd becomes “flat” at almost every state xd. /

We are now ready to present our first main result using the assumptions A1, A2, A3, and
A4. We establish the following results on asymptotic ESJD and asymptotic acceptance rate.

Theorem 3.10. (Asymptotic ESJD and acceptance rate) Suppose πd satisfies A1, A2, A3,
and A4, then as d→∞, we have∣∣∣∣∣ESJD(d)− 2

d`2

d− 1
EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]∣∣∣∣∣→ 0, (12)∣∣∣∣∣EXd∼πdEY d
(

1 ∧ π
d(Y d)

πd(Xd)

)
− 2EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]∣∣∣∣∣→ 0, (13)

where the expectation over Y d is taken for Y d ∼ N (xd, `2

d−1I) for given Xd = xd.

Proof. See Appendix A. �
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Since the assumptions required by Theorem 3.10 are very mild, the result of Theorem 3.10
holds for a large class of realistic MCMC models. As an example, we give a class of graphical
models that all conditions A1, A2, A3, and A4 hold. Therefore, the asymptotic ESJD and
acceptance rate by Theorem 3.10 hold for this class of graphical models. We will further
discuss realistic MCMC models later in Section 4.1 and Section 4.2.

We give a simple criterion that the assumptions A1, A2, A3, and A4 hold. More discussions
and examples are delayed to Section 4.

Corollary 3.11. If a graphical model satisfies (i) either each node has at most ld =

o(d1/4) links or the number of 3-cliques of the graph is o(d3/2); (ii) Id(X
d) is tight; (iii)

πd has bounded density and log πd has up to the third bounded partial derivatives, then the
assumptions A1, A2, A3, and A4 hold. Therefore, the asymptotic ESJD and acceptance rate
results by Theorem 3.10 hold.

Proof. First, the assumption A1 holds when second partial derivatives of log πd are bounded.
Next, the assumption A2 automatically holds for graphical models. Furthermore, ld = o(d1/4)

implies that the number of 3-cliques is o(d3/2). Then one can easily verify that the assumption
A3 holds using the fact that the third partial derivatives of log πd are bounded. Finally, the
assumption A4 holds since Id(X

d) is tight. �

Note that Theorem 3.10 suggests that under mild conditions on the target distribution,
the expected acceptance rate

EXd∼πdEY d
(

1 ∧ π
d(Y d)

πd(Xd)

)
→ 2EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]
. (14)

Therefore, we can define asymptotic acceptance rate as a function of ` as follows.

Definition 3.12. (Asymptotic Acceptance Rate) The asymptotic acceptance rate function
is defined by

a(`) := 2EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]
. (15)

The next theorem shows that if the target distribution satisfies A1, A2, A3 and A4, then
if we maximize the asymptotic ESJD, the resulting asymptotic acceptance rate is no larger
than 0.234.

Theorem 3.13. Defining the optimal parameter for maximizing the asymptotic ESJD by ˆ̀,
i.e.

ˆ̀ := arg max
`
h(`), h(`) := 2`2EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]
, (16)

then we have a(ˆ̀) ≤ 0.234 (to three decimal places).

Proof. We follow the arguments in [Taw17, Lemma 5.1.4]. First, it can be verified by taking
the second derivatives of h(`) with respect to ` that the maximum of h(`) is achieved at `
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such that ∂h(`)
∂` = 0. Therefore, the optimal ˆ̀ satisfies

2EXd∼πd

[
Φ

(
−

ˆ̀
√
Id(Xd)

2

)]
= EXd∼πd

[
ˆ̀
√
Id(Xd)

2
Φ′

(
−

ˆ̀
√
Id(Xd)

2

)]
. (17)

Therefore, the asymptotic acceptance rate

a(ˆ̀) = EXd∼πd

[
ˆ̀
√
Id(Xd)

2
Φ′

(
−

ˆ̀
√
Id(Xd)

2

)]
= EXd∼πd

[
−Φ−1(V )Φ′

(
Φ−1(V )

)]
, (18)

where V := Φ

(
−

ˆ̀
√
Id(Xd)
2

)
. By [She06], the function −Φ−1(x)Φ′

(
Φ−1(x)

)
is a concave

function for any x ∈ (0, 1). Therefore, we have

a(ˆ̀) = EXd∼πd
[
−Φ−1(V )Φ′

(
Φ−1(V )

)]
≤ −Φ−1[EXd∼πd(V )]Φ′

[
Φ−1(EXd∼πd(V ))

]
. (19)

Defining m := −Φ−1[EXd∼πd(V )], we can then write a(ˆ̀) = 2Φ(−m) ≤ mΦ′(−m). Finally, it
suffices to show that 2Φ(−m) ≤ mΦ′(−m) implies 2Φ(−m) ≤ 0.234 (to three decimal places).
Note that the function x2Φ(−x) is maximized at m̂ such that 2Φ(−m̂) = m̂Φ′(−m̂) ≈ 0.234.
By [Taw17, Lemma 5.1.4], the function 2Φ(−x) − xΦ′(−x) is positive for x < m̂ and
negative for x > m̂. Therefore, 2Φ(−m) ≤ mΦ′(−m) implies that m > m̂. Since Φ(−x) is

monotonically decreasing with x, we have a(ˆ̀) = 2Φ(−m) ≤ 2Φ(−m̂) ≈ 0.234. �

The next result is our main result for optimal scaling by maximizing ESJD. Defining the
following WLLN condition for the target πd:

Id(X
d)− Īd → 0 in probability (A5)

where Xd ∼ πd and Īd := EXd∼πd [Id(X
d)], we show that if the target distribution πd satisfies

A1, A2, A3, A4, and the WLLN assumption in A5, then the acceptance rate 0.234 is
asymptotically optimal.

Theorem 3.14. (Optimal Scaling for Maximizing ESJD) Suppose the target distribution πd

satisfies A1, A2, A3, A4, and A5. Then the asymptotic optimal acceptance rate a(ˆ̀) ≈ 0.234
(to three decimal places).

Proof. By convexity of the function Φ(−x) when x ≥ 0, we can immediately obtain a lower
bound

`2EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]
≥ `2

[
Φ

(
−`EXd∼πd [

√
Id(Xd)]

2

)]
. (20)

Under A5, this lower bound is asymptotically tight. Therefore, as d → ∞, according to
[RGG97], we have (to two decimal places)

ˆ̀→ 2.38

EXd∼πd [
√
Id(Xd)]

, h(ˆ̀)→ 1.3(
EXd∼πd [

√
Id(Xd)]

)2 . (21)
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The acceptance rate which maximizing the asymptotic ESJD is

a(ˆ̀) = 2EXd∼πd

[
Φ

(
−

ˆ̀
√
Id(Xd)

2

)]
→ 2Φ

(
−

ˆ̀EXd∼πd
√
Id(Xd)

2

)
(22)

≈ 2Φ

(
− 2.38

EXd∼πd [
√
Id(Xd)]

EXd∼πd [
√
Id(Xd)]

2

)
= 2Φ(−1.19) ≈ 0.234. (23)

�

Remark 3.15. Comparing the results of Theorem 3.13 and Theorem 3.14, it is clear that the
“roughness” of πd, Id(X

d), is the key quantity which determines the optimal acceptance rate

a(ˆ̀) ≤ 0.234 when only the tightness of Id(X
d) can be verified, or a(ˆ̀) ≈ 0.234 when the

concentration of Id(X
d) as defined in A5 can be verified. We will later demonstrate how to

verify A5 for some realistic MCMC models in Section 4.1 and Section 4.2. /

3.2. Optimal Scaling via Diffusion Limits. In this subsection, we consider sufficient
conditions on πd for establishing weak convergence of diffusion limits. As we discussed before,
establishing such results gives stronger guarantee for optimal scaling than maximizing ESJD.
However, it also requires stronger conditions on the target distribution. As we will see in the
following, we need to strengthen assumptions A2, A3, A4, A5 and add one more assumption
A6.

We first strengthen A2 to a new assumption A2+ as follows.

d∑
i=1

d∑
j=1

d∑
k=1

∫ (
∂2πd

∂x2i

1

πd

)(
∂2πd

∂x2j

1

πd

)(
∂2πd

∂x2k

1

πd

)
πddxd = O(d2−δ) (A2+)

for some δ > 0.

Remark 3.16. The new assumption A2+ is stronger than A2 but is still very mild. To see
this, we consider graphical models as examples. For graphical models with d nodes each
with O(ld) links, there are at most O(dl2d) 3-cliques. Therefore, A2+ holds for any graphical

model with ld = o(d1/2−δ) and bounded second partial derivatives of log πd. Note that this
is only for the worst case, as many realistic graphical models do not have 3-cliques. /

Next, we slightly strengthen A3 and A4 to A3+ and A4+.

sup
(i,j):j /∈Hi

sup
xd∈Rd

∂3 log πd(xd)

∂x2i ∂xj
= o(1), sup

(i,j):j∈Hi
sup
xd∈Rd

∂3 log πd(xd)

∂x2i ∂xj
= o(

√
d/ld),

∑
i 6=j 6=k

(
sup
xd∈Rd

∣∣∣∣∂3 log πd(xd)

∂xi∂xj∂xk

∣∣∣∣
)

= o(d3/2).

(A3+)
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Suppose exists 0 < α < 1/2 that

sup
i

sup
xd∈F (i)

d

∂2 log πd(xd)

∂x2i
= o(dα), sup

i
sup

xd∈F (i)
d

∂ log πd(xd)

∂xi
= O(dα/2),

sup
xd∈F+

d

πd(xd) = o(d1/2−α), sup
xd∈F+

d

1/Id(x
d) = O(dα/4).

(A4+)

Furthermore, we strengthen the WLLN condition A5 to the following A5+.

sup
xd∈F+

d

∣∣∣Id(xd)− Ī∣∣∣→ 0 (A5+)

where Ī := limd→∞ Īd exists.

Remark 3.17. A3+ is only slightly stronger than A3 on the rates. A4+ also includes a

new condition on the rate of ∂2 log πd(xd)
∂x2i

which is quite weak. A5+ requires any sequence

(x1, x2, . . . , xd, . . . ) where xi ∈ F+
i converges to the same limit Ī, so it is (slightly) stronger

than WLLN condition in A5. It will become clear in the proof of Theorem 3.19 that A5+
is to ensure the speed measure of the diffusion process h(`) does not depend on the state
xd. /

Finally, we define a new assumption A6 on the target distribution. Roughly speaking, the
new assumption is to require the first coordinate of πd is asymptotically independent with
the rest.

lim
d→∞

sup
xd∈F+

d

∣∣∣∣ d

dx1

[
log πd(x1 |x−1)− log π̃(x1)

]∣∣∣∣=0, (A6)

where x−1 := (x2, . . . , xd), π̃ is a one-dimensional density and (log π̃)′ is Lipschitz continous.

Remark 3.18. Note that A6 is a strong condition, which may not be satisfied for many
realistic MCMC models. However, it might be necessary in order to get a one-dimensional
diffusion limit for the first coordinate. In the proof of the optimal scaling via diffusion limits
result in Theorem 3.19, the assumption A6 is to ensure the SDE for the first coordinate x1
doesn’t depend on the values of other coordinates. Furthermore, although we do not pursue
in this paper, if in A6 we instead assume not just the first component but a finite collection
of components are asymptotically independent from the rest, a version of weak convergence
to multi-dimensional diffusion limits could be obtained following similar arguments as the
proof of the one-dimensional diffusion limit case in Theorem 3.19. /

Now we are ready for the main result of optimal scaling via diffusion limits, which is
given in Theorem 3.19. We show that, even though different coordinates of the Markov
chain are not independent nor even individually Markovian, the sped-up first-coordinate
process converges to a limiting diffusion limit under much more general conditions on the
target distribution. Comparing with the assumptions in Theorem 3.14, the new sufficient
conditions for diffusion limits include strengthening A2 to A2+, A3 and A4 to A3+ and
A4+, A5 to A5+, and adding A6. We also require slightly stronger condition on the sequence
of “sets of typical states” {Fd}.
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Theorem 3.19. (Optimal Scaling via Diffusion Limits) Suppose the sequence {Fd} satisfies
πd(F cd ) = O(d−1−δ) for some δ > 0, the target distribution πd satisfies A1, A2+, A3+, A4+,

A5+, and A6, then for Ud(t) := Xd
1 (bdtc), as d→∞, we have Ud ⇒ U , where ⇒ denotes

weak convergence in Skorokhod topology, and U satisfies the Langevin SDE

dU(t) = (h(`))1/2dB(t) + h(`)
π̃′(U(t))

2π̃(U(t))
dt, (24)

where h(`) := 2`2Φ(−`
√
Ī/2) is the speed measure for the diffusion process.

Proof. See Appendix C. �

Remark 3.20. Note that Theorem 3.19 allows dependent coordinates on the target distri-
bution, which is much more general than the product i.i.d. condition. The only strong
assumption is A6 which requires the first coordinate is asymptotically independent with
other coordinates. /

Next, we present another result with slightly stronger conditions, which allows the RWM
algorithm to start at a fixed state. This stronger convergence result later allows us to establish
a complexity bound for the RMW algorithm in Section 3.3 Let Xd = {Xd(t), t ≥ 0} for d ∈ N
be the RWM processes defined earlier. Without loss of generality, suppose {Xd, d = 1, 2, . . . }
are defined in a common measurable metric space (R∞,F , ρ) as independent processes.

Theorem 3.21. (Optimal Scaling via Diffusion Limits with fixed starting state) Suppose Xd
1

converges weakly in the Skorokhod topology as d→∞ to a càdlàg process X∞1 . Moreover,
assume these processes {Xd, d = 1, 2, . . . } all have the same marginal stationary distribution
π1 for the first coordinate and that the first coordinate of X∞ converges weakly to π1. Suppose
the sequence {Fd} satisfies πd(F cd ) = O(d−2−δ) for some δ > 0, the target distribution πd

satisfies A1, A3+, A4+, A5+, and A6. We strengthen A2+ to the following condition∑
i,j,k,l,m∈{2,...,d}

∫ (
∂2π−1
∂x2i

· ∂
2π−1
∂x2j

· ∂
2π−1
∂x2k

· ∂
2π−1
∂x2l

· ∂
2π−1
∂x2m

)(
1

π−1

)5

πddxd = O(d3−6δ).

(A2++)
Then as d → ∞, we have xU

d ⇒ xU , where xU
d(t) := (Xd

1 (bdtc) |Xd
1 (0) = x) is the first

coordinate of the RWM algorithm sped up by a factor of d, conditional on starting at the
state x, and xU is the limiting ergodic Langevin diffusion U in Eq. (24) also conditional on
starting at x.

Proof. See Appendix D. �

Remark 3.22. The new assumption A2++ is stronger than A2+ but is still not strong. To
see this, for graphical models with d nodes, each with O(ld) links, we have at most O(dl2d)
3-cliques. Under flat tail assumptions, at most O(d2l3d) terms in the summation in A2++ is

not zero. Therefore, A2++ holds for any graphical model with ld = o(d1/3−2δ) and bounded
second partial derivatives of log πd. Note that this is only for the worst case, as many
realistic graphical models do not have 3-cliques. /
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3.3. Complexity Bounds via Diffusion Limits. In the following, by combing Theo-
rem 3.21 and Proposition 2.3, we present a complexity bound for the RWM algorithm which
holds for much more general target distributions comparing with [RR16]. More specifically, if
the target distribution satisfies the conditions given in Theorem 3.21 which allows dependent
coordinates of the target distribution, the RWM algorithm in d dimensions takes O(d)
iterations to converge to stationarity.

Corollary 3.23. (Complexity Bound for RWM Algorithms) Under the conditions of Theo-
rem 3.21, for any ε > 0, there exists D <∞ and T <∞, such that

EXd
1 (0)∼π1

‖LXd
1 (0)

(Xd
1 (bdtc))− π1‖KR < ε, ∀t ≥ T, d ≥ D, (25)

where π1 denotes the marginal stationary distribution of the first coordinate.

Proof. The result directly comes from Proposition 2.3 and Theorem 3.21. �

4. Examples and Applications

In this section, we further discuss examples and applications of the main results in
Section 3. We first discuss in Section 4.1 on verifying the assumptions of Theorem 3.14 for
realistic MCMC models. We have explained in Remarks 3.6 to 3.9 that A1, A2, A3, and
A4 are typically very weak conditions and they hold for some classes of graphical models.
However, as discussed in Remark 3.15, the assumption A5 may need to be verified case by
case. Particularly, in order to satisfy A5, we may need to make additional assumptions on the
observed data. Fortunately, we show by a simple Gaussian example in Example 4.1 that, in
some cases, A5 can be easily verified without any further assumptions. Then, in Section 4.2,
we extend the simple Gaussian example in Example 4.1 to a more realistic MCMC model in
Example 4.5 and show it satisfies all the assumptions required by Theorem 3.14. Thus, the
acceptance rate 0.234 is indeed asymptotically optimal for this realistic MCMC model.

4.1. Discussions on Theorem 3.14. The optimal scaling result for maximizing ESJD in
Theorem 3.14 requires one to verify that the target distribution satisfies A1, A2, A3, A4,
and A5. We discuss how to verify the conditions on the target distribution required by
Theorem 3.14 in practice. We explain that A1, A2, A3 and A4 are quite mild and usually
easy to be verified. Therefore, we usually only need to focus on the WLLN condition in A5,
which might be difficult to check in practice. Throughout this subsection, we demonstrate
verification of all the assumptions by a simple Gaussian example, which can be seen as a
simplified version of typical Bayesian hierarchical models.

Example 4.1. (A Gaussian Example) Consider a simple Gaussian MCMC model

Yij | θij ∼ N (θij , 1), i, j ∈ {1, . . . , n}
θij | µj ∼ N (µj , 1), i ∈ {1, . . . , n}
µj | ν ∼ N (ν, 1)

ν ∼ flat prior on R,

(26)
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where {Yij}ni,j=1 are the observed data, and xd = (ν, {µj}nj=1, {θij}ni,j=1) are parameters.

Note that we have the number of parameters d = n2 + n+ 1 in this example. The target
distribution (i.e. the posterior distribution) satisfies

πd(xd) = P(xd | {Yij}ni,j=1) ∝
n∏
j=1

n∏
i=1

1√
2π
e−

(µj−ν)
2

2
1√
2π
e−

(θij−µj)
2

2
1√
2π
e−

(Yij−θij)
2

2 . (27)

Note that the hyperparameters ν is conditionally independent given {θij}. Therefore, ν is
only directly dependent with n coordinates {µj}nj=1. We can define the “neighborhoods”
of ν using the collection of µj , j = 1, . . . , n. Similarly, µj is directly dependent with ν and
{θij}ni=1 and θij is directly dependent with µj . Therefore, if we choose the directly dependent

coordinates as “neighborhoods”, we have ld = n+ 1 = O(d1/2). /

4.1.1. Verifying A1 to A4. First of all, the two conditions for (i, j) : j 6= Hi in A1 and
A3 hold trivially for graphical models. Furthermore, in Example 4.1, the parameter ν is
conditional independent with all θij and the corresponding conditional posterior distributions
all have Gaussian tails, which implies A2 holds for any pair of coordinates (ν, θij). Similarly,
one can easily verify the assumption holds for other pairs of parameters.

Next, all the conditions on the third partial derivatives of log πd hold, since there is no
3-cliques. Moreover, in Example 4.1, we have ld = O(d1/2). The second partial derivative is
O(1), and the density πd is bounded, so the following conditions hold without the need of
choosing {Fd}:

sup
(i,j):j∈Hi

sup
xd∈F+

d

∂2 log πd(xd)

∂xi∂xj
= o(

√
d/ld), sup

xd∈F+
d

πd(xd) = o(d1/2−α). (28)

Finally, the last two conditions are almost immediately true once A5 has been verified:

sup
i∈{1,...,d}

sup
xd∈F+

d

∂ log πd(xd)

∂xi
= O(dα), sup

xd∈F+
d

1/I(xd) = O(dα/2). (29)

To see this, under A5, we have 1
d

∑d
i=1

(
∂
∂xi

log πd(xd)
)2
→ Īd. If Īd → Ī and Ī > 0, then

we can select constant K2 > 0 small enough such that Ī > K2d
−α/2 > 0 then Īd > K2d

−α/2

for all large enough d. Next, by choosing the typical set Fd such that for any xd ∈ F+
d , we

have ∂ log πd(xd)
∂xi

≤ K1d
α, Id(x

d) ≥ K2d
−α/2, where K1 is a large enough constant. Then

it suffices to check if {Fd} is a valid sequence of typical sets such that πd(Fd) → 1. For
Example 4.1, we have Xd = (ν, {νj}nj=1, {θij}ni,j=1). We will show later that A5 holds such

that under Xd ∼ πd we have 1
d

∑d
i=1

(
∂
∂xi

log πd(Xd)
)2
→ 3. For example, we can choose
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K2 = 0.01, K1 = 100, and the typical set Fd such that, for any Xd = xd ∈ F+
d , we have

Id(x
d) > 0.01n−α,

∂ log πd

∂ν
= n(µ̄− ν) ≤ 100n2α, (30)

∂ log πd

∂µj
= (n+ 1)

(∑
i θij + ν

n+ 1
− µj

)
≤ 100n2α, (31)

∂ log πd

∂θij
= 2

(
Yij + µj

2
− θij

)
≤ 100n2α, (32)

where α < 1/2 can be arbitrarily close to 1/2. Observing that, under Xd ∼ πd, we have the
following conditional distributions.

θij | Yij , µj ∼indep. N
(
µj + Yij

2
,
1

2

)
, i, j ∈ {1, . . . , n},

µj |
∑
i

θij , ν ∼indep. N
(∑

i θij + ν

n+ 1
,

1

n+ 1

)
, i ∈ {1, . . . , n},

ν | µ̄ ∼ N
(
µ̄,

1

n

)
.

(33)

Then it can be easily verified that πd(Fd)→ 1.

4.1.2. Verifying A5. One assumption of Theorem 3.14 that could be difficult to verify in
practice is A5. It requires the sequence of random variables {Id(Xd)} converge to a sequence
of constants in probability. We feel this assumption has to be checked case by case and it
is hard to get general sufficient condition for it to hold. For realistic MCMC models, this
may require assumptions on the observed data so that the posterior distribution has certain
“concentration” properties as d→∞.

Fortunately, for Example 4.1, we can verify that A5 holds without any further assumption
on the observed data {Yij}. Note that in Example 4.1, we have

(
∂ log πd

∂ν

)2

=

∑
j

(µj − ν)

2

= n2 (µ̄− ν)2 , (34)

(
∂ log πd

∂µj

)2

=

(∑
i

(θij − µj)− (µj − ν)

)2

= (n+ 1)2
(∑

i θij + ν

n+ 1
− µj

)2

, (35)

(
∂ log πd

∂θij

)2

= ((Yij − θij)− (θij − µj))2 = 4

(
Yij + µj

2
− θij

)2

. (36)
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Hence, if suffices to show that, under Xd = (ν, {µj}nj=1, {θij}ni,j=1) ∼ πd, the following three
terms converges to some constants in probability or in distribution:

1

d

(
∂ log πd

∂ν

)2

=
n2

n2 + n+ 1
(µ̄− ν)2, (37)

1

d

∑
j

(
∂ log πd

∂µj

)2

=
(n+ 1)2

n2 + n+ 1

∑
j

(∑
i θij + ν

n+ 1
− µj

)2

, (38)

1

d

∑
ij

(
∂ log πd

∂θij

)2

=
4

d

∑
ij

(
Yij + µj

2
− θij

)2

. (39)

We have observed that the target distribution πd has conditional independence structure in
Eq. (33), which immediately leads to

(µ̄− ν)2 →P 0,
∑
j

(∑
i θij + ν

n+ 1
− µj

)2

→P 1,
1

d

∑
ij

(
Yij + µj

2
− θij

)2

→P 1

2
. (40)

Therefore, A5 is satisfied.
Overall, we have checked all the assumptions of Theorem 3.14 for our simple Gaussian

example. Therefore, by Theorem 3.14, we have the following optimal scaling result for
Example 4.1.

Proposition 4.2. The optimal scaling for Example 4.1 by maximizing ESJD is to choose
(to two decimal places) ˆ̀≈ 2.38

E
Xd∼πd [

√
I(Xd)]

→ 2.38√
3
≈ 1.37 and the corresponding asymptotic

acceptance rate is (to three decimal places) 0.234.

4.2. Optimal Scaling of a Realistic MCMC Model. We first discuss sufficient con-
ditions for two more classes of graphical models. In Proposition 4.3, we give sufficient
conditions for the first equation of A1, A2, and the first equation of A3 to hold for one
particular class of graphical models. In Proposition 4.4, we give sufficient conditions for A5
to hold for one specific class of graphical models.

First, we consider the class of graphical models represented by the factor graphs:

πd(xd) ∝
Kd∏
k=1

ψk({xi : i ∈ Ck}), (41)

where Ck are cliques, ψk are potentials, Kd denotes the number of potentials.

Proposition 4.3. For the class of graphical models represented by Eq. (41). Let md denotes
the maximum number of cliques a coordinate can belong to. If all the potentials ψk have
“flat tails” in the sense that for all k we have ∂ψk

∂xi
→ 0 as |xi| → ∞ for all i ∈ Ck, and the

cardinality of Ck satisfies supk |Ck| = o(d/md), then the first equation in A1, A2, and the
first equation in A3 hold.

Next, we consider Bayesian hierarchical modeling where K denotes the number of “layers”
or “stages” of the model. We use θ(k), k = 1, . . . ,K to denote the parameter vector with
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length nk for the k-th layer, where θ(k) := (θ
(k)
1 , . . . , θ

(k)
nk ). We consider the special structure

of the graphical model such that θ(k) is only connected to θ(k−1) and θ(k+1). Using factor
graphs, let xd = (θ(1), . . . , θ(K)) we can represent the target distribution as

πd(xd) ∝
K∏
k=1

ψk(θ
(k−1), θ(k)), (42)

where d =
∑K

k=1 nk, {ψk} are the potentials, and without loss of generality we assumed θ(0)

to be the observed data.
In the following, we show that A5 hold for the class of graphical models represented by

Eq. (42) under certain conditions.

Proposition 4.4. For the class of graphical models represented by Eq. (42), if θ(k) =

(θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
nk ) are independent conditional on θ(k−1) and θ(k+1) and this holds for all k.

Moreover, if under Xd = (θ(1), . . . , θ(K)) ∼ πd all the potentials ψk satisfy

sup
i∈{1,...,nk}

∣∣∣∣∣∂ logψk

∂θ
(k)
i

∣∣∣∣∣ = OP

(√
d/nk

)
, sup

j∈{1,...,nk−1}

∣∣∣∣∣∂ logψk

∂θ
(k−1)
j

∣∣∣∣∣ = OP

(√
d/nk−1

)
(43)

then A5 holds.

Next, we extend the simple Gaussian example in Example 4.1 to a more realistic MCMC
model which belongs to both classes of graphical models in Eqs. (41) and (42) and show
that all the assumptions for the optimal scaling result in Theorem 3.14 hold.

Example 4.5. (A Realistic MCMC Model) Consider a realistic MCMC model

Yij | θij ∼ N (θij ,W ), i, j ∈ {1, . . . , n}
θij | µj ∼ N (µj , V ), i ∈ {1, . . . , n}
µj | ν ∼ N (ν,A)

ν ∼ flat prior on R,
A ∼ IG(a, b),

(44)

where xd = (ν,A, {µj}nj=1, {θij}ni,j=1) are parameters, {Yij} are the observed data, and
a, b,W, V are known constants. /

We further assume that the observed data {Yij} is not abnormal so that the posterior of
the hyperparameter A concentrates to some unknown constant.

Assumption. The posterior of the hyperparameter A in Example 4.5 concentrates to some
unknown constant A0 > 0 as n→∞.

Note that this is a very reasonable assumption which implies the MCMC model is not
seriously misspecified. We do not discuss sufficient conditions on the observed data {Yij}ni,j=1

for concentration of posterior distribution of A here since it is not the focus of this paper.
Next, we show that, under this assumption, the realistic MCMC model satisfies all the
conditions required for optimal scaling in Theorem 3.14. Therefore, the acceptance rate
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0.234 is indeed asymptotically optimal for this MCMC model in the sense of maximizing
ESJD.

Proposition 4.6. Under the above assumption, the optimal asymptotic acceptance rate for
the realistic MCMC model in Example 4.5 is (to three decimal places) 0.234.

Proof. See Appendix E. �
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A. Proof of Theorem 3.10

Throughout the proof, for simplicity, we assume the coordinates are linear ordered. The
“neighborhoods” of a coordinate is defined by Hi := {j : |i− j| < ld}. Therefore sup(i,j):j∈Hi
can be simplified to sup|i−j|<ld and sup(i,j):j /∈Hi can be simplified to sup|i−j|≥ld . Note that
the use of linear ordering is only for simplifying notations. It is straightforward to extend
the proof to the cases of general ordering.

For Theorem 3.10, we only prove∣∣∣∣∣ESJD(d)− 2
d`2

d− 1
EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]∣∣∣∣∣→ 0, (45)

since the proof of∣∣∣∣∣EXd∼πdEY d
(

1 ∧ π
d(Y d)

πd(Xd)

)
− 2EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]∣∣∣∣∣→ 0 (46)

follows similarly.

First, we write ESJD as ESJD(d) =:
∑d

i=1 ESJDi(d), where

ESJDi(d) := EXd∼πdEY d
[
(Yi −Xi)

2

(
1 ∧ π

d(Y d)

πd(Xd)

)]
. (47)

Then it suffices to show that

sup
i∈{1,...,d}

∣∣∣∣∣ESJDi(d)− 2`2

d− 1
EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]∣∣∣∣∣ = o(d−1). (48)

Writing ESJDi(d) = EXd∼πdEYi
[
(Yi −Xi)

2EY−i
(

1 ∧ πd(Y d)
πd(Xd)

)]
, it suffices to show that uni-

formly over i ∈ {1, . . . , d}

EXd∼πd

∣∣∣∣∣EYi
[
(Yi −Xi)

2EY−i

(
1 ∧ π

d(Y d)

πd(Xd)

)]
− 2`2

d− 1
Φ

(
−`
√
Id(Xd)

2

)∣∣∣∣∣ (49)

= EXd∼πd

∣∣∣∣∣EYi
{

(Yi −Xi)
2

[
EY−i

(
1 ∧ π

d(Y d)

πd(Xd)

)
− 2Φ

(
−`
√
Id(Xd)

2

)]}∣∣∣∣∣ (50)

= o(d−1). (51)
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It then suffices to show

sup
xd∈Fd

∣∣∣∣∣EYi
{

(Yi − xi)21yd(i)∈F (i)
d

[
EY−i

(
1 ∧ π

d(Y d)

πd(xd)

)
− 2Φ

(
−`
√
Id(xd)

2

)]}∣∣∣∣∣ (52)

≤ EYi

(Yi − xi)2 sup
yd(i)∈F (i)

d ,xd∈Fd

∣∣∣∣∣EY−i
(

1 ∧ π
d(Y d)

πd(xd)

)
− 2Φ

(
−`
√
Id(xd)

2

)∣∣∣∣∣
 = o(d−1),

(53)

where yd(i) := (x1, . . . , xi−1, Yi, xi+1, . . . , xd). Defining M
(i)

xd
(Yi) := EY−i

(
1 ∧ πd(Y d)

πd(xd)

)
, since

log
πd(Y d)

πd(xd)
= log

πi(Yi)

πi(xi)
+ log

π−i(Y−i |Yi)
π−i(x−i |xi)

(54)

=

(
log

πi(Yi)

πi(xi)
+ log

π−i(x−i |Yi)
π−i(x−i |xi)

)
+ log

π−i(Y−i |Yi)
π−i(x−i |Yi)

, (55)

we can write

M
(i)

xd
(Yi) =EY−i

[
1 ∧ π

d(Y d)

πd(xd)

]
= EY−i

[
1 ∧ exp

(
log

πd(Y d)

πd(xd)

)]
(56)

=EY−i

[
1 ∧ exp

(
log

πi(Yi)

πi(xi)
+ log

π−i(x−i |Yi)
π−i(x−i |xi)

+ log
π−i(Y−i |Yi)
π−i(x−i |Yi)

)]
. (57)

Note that the expectation is taken over Y−i and only the last term, log π−i(Y−i |Yi)
π−i(x−i |Yi) , involves

Y−i.

In the following, we then first focus on approximating log π−i(Y−i |xi)
π−i(x−i |xi) for given xd ∈ F+

d .

Since Y d ∼ N (xd, `2

d−1I), we first approximate log π−i(Y−i |xi)
π−i(x−i |xi) by the first two terms of its

Taylor expansion.
Define

m
(i)
1 (Y−i, x

d) := (∇ log π−i)
T (Y−i − x−i) +

1

2
(Y−i − x−i)T [∇2 log π−i](Y−i − x−i), (58)

where

(∇ log π−i)
T (Y−i − x−i) :=

∑
j∈{1,...,d},j 6=i

∂ log π−i(x−i |xi)
∂xj

(Yj − xj) (59)

and [∇2 log π−i] denotes the (d− 1)× (d− 1) matrix with elements{
∂2 log π−i(x−i |xi)

∂xj∂xk

}
j,k∈{1,...,d},j 6=i,k 6=i

.

Then, we have the following result.
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Lemma A.1. Uniformly over i ∈ {1, . . . , d}, we have

sup
xd∈F+

d

EY−i

[∣∣∣∣m(i)
1 (Y−i, x

d)− log
π−i(Y−i |xi)
π−i(x−i |xi)

∣∣∣∣]→ 0. (60)

Proof. See Appendix B.1. �

Next, we approximate the second order term of the Taylor approximation 1
2(Y−i −

x−i)
T [∇2 log π−i](Y−i − x−i) by a non-random term 1

2
`2

d−1
∑

j 6=i
∂2 log π−i

∂x2j
.

Lemma A.2. Uniformly over i ∈ {1, . . . , d}, we have

sup
xd∈F+

d

EY−i

∣∣∣∣∣∣(Y−i − x−i)T [∇2 log π−i](Y−i − x−i)−
`2

d− 1

∑
j 6=i

∂2 log π−i
∂x2j

∣∣∣∣∣∣
→ 0. (61)

Proof. See Appendix B.2. �

Defining

m
(i)
2 (Y−i, x

d) := (∇ log π−i)
T (Y−i − x−i) +

1

2

`2

d− 1

∑
j 6=i

∂2 log π−i
∂x2j

, (62)

we have

m
(i)
2 (Y−i, x

d) ∼ N
(
`2S

(i)
d /2, `2R

(i)
d

)
, (63)

where

R
(i)
d :=

1

d− 1

∑
j 6=i

(
∂ log π−i(x−i |xi)

∂xj

)2

, S
(i)
d :=

1

d− 1

∑
j 6=i

∂2 log π−i(x−i |xi)
∂x2j

. (64)

Next, we show we can approximate S
(i)
d by −R(i)

d .

Lemma A.3. There exists a sequence of subsets of states {F ′d}, such that πd(F ′d)→ 1 and

sup
i∈{1,...,d}

sup
xd∈F ′d

∣∣∣R(i)
d + S

(i)
d

∣∣∣→ 0. (65)

Proof. See Appendix B.3. �

Now defining

m
(i)
3 (Y−i, x

d) := (∇ log π−i)
T (Y−i − x−i) +

1

2

`2

d− 1

∑
j 6=i

(
∂ log π−i(x−i |xi)

∂xj

)2

, (66)

we have

m
(i)
3 (Y−i, x

d) ∼ N
(
−`2R(i)

d /2, `
2R

(i)
d

)
. (67)
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By triangle inequality, we can write∣∣∣∣m(i)
3 (Y−i, x

d)− log
π−i(Y−i |xi)
π−i(x−i |xi)

∣∣∣∣ ≤ ∣∣∣∣m(i)
1 (Y−i, x

d)− log
π−i(Y−i |xi)
π−i(x−i |xi)

∣∣∣∣ (68)

+
∣∣∣m(i)

2 (Y−i, x
d)−m(i)

1 (Y−i, x
d)
∣∣∣ (69)

+
∣∣∣m(i)

3 (Y−i, x
d)−m(i)

2 (Y−i, x
d)
∣∣∣ . (70)

Therefore, using Lemmas A.1 to A.3, we get

sup
i∈{1,...,d}

sup
xd∈F+

d ∩F
′
d

EY−i

[∣∣∣∣m(i)
3 (Y−i, x

d)− log
π−i(Y−i |xi)
π−i(x−i |xi)

∣∣∣∣]→ 0. (71)

Next, we abuse the notation a little bit by defining

R
(i)
d (y) :=

1

d− 1

∑
j 6=i

(
∂ log π−i(x−i |xi = y)

∂xj

)2

. (72)

Then by the definition of m
(i)
3 , we replace xd by yd(i) = (x1, . . . , xi−1, Yi, xi+1, . . . , xd), which

yields

m
(i)
3 (Y−i, y

d(i)) = (∇ log π−i(x−i |Yi))T (Y−i − x−i) (73)

+
1

2

`2

d− 1

∑
j 6=i

(
∂ log π−i(x−i |Yi)

∂xj

)2

. (74)

Then, we have

m
(i)
3 (Y−i, y

d(i)) ∼ N
(
−`2R(i)

d (Yi)/2, `
2R

(i)
d (Yi)

)
. (75)

Recall that M
(i)

xd
(Yi) = EY−i

[
1 ∧ exp

(
log πi(Yi)

πi(xi)
+ log π−i(x−i |Yi)

π−i(x−i |xi) + log π−i(Y−i |Yi)
π−i(x−i |Yi)

)]
, defining

M̂
(i)

xd
(Yi) = EY−i

[
1 ∧ exp

(
log

πi(Yi)

πi(xi)
+ log

π−i(x−i |Yi)
π−i(x−i |xi)

+m
(i)
3 (Y−i, y

d(i))

)]
, (76)

we next apply the following two lemmas from [RGG97].

Lemma A.4. ([RGG97, Proposition 2.2]) The function g(x) = 1∧ ex is Lipschitz such that

|g(x)− g(y)| ≤ |x− y|, ∀x, y. (77)

Lemma A.5. ([RGG97, Proposition 2.4]) If z ∼ N (µ, σ2) then

E(1 ∧ ez) = Φ(µ/σ) + exp(µ+ σ2/2)Φ(−σ − µ/σ). (78)

By Lemma A.4 and Eq. (71), we have that uniformly over i ∈ {1, . . . , d}

sup
yd(i)∈F+

d ∩F
′
d

∣∣∣M (i)

xd
(Yi)− M̂ (i)

xd
(Yi)

∣∣∣→ 0. (79)
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Applying Lemma A.5 to M̂
(i)

xd
(Yi) yields

M̂
(i)

xd
(Yi) = Φ

(
R

(i)
d (Yi)

−1/2
(
`−1 log

πd(yd(i))

πd(xd)
− `R(i)

d (Yi)/2

))
(80)

+ exp

(
log

πd(yd(i))

πd(xd)

)
Φ

(
−`R(i)

d (Yi)
1/2/2− log

πd(yd(i))

πd(xd)
R

(i)
d (Yi)

−1/2`−1
)
.

(81)

Note that it is easy to check that M̂
(i)

xd
(xi) = 2Φ

(
− `

√
R

(i)
d

2

)
. We then show M̂

(i)

xd
(xi)

converges to 2Φ

(
− `
√
Id(xd)
2

)
.

Lemma A.6.

sup
i∈{1,...,d}

sup
xd∈F+

d

∣∣∣∣∣∣2Φ

−`
√
R

(i)
d

2

− 2Φ

(
−`
√
Id(xd)

2

)∣∣∣∣∣∣→ 0. (82)

Proof. See Appendix B.4. �

Finally, using Taylor expansion together with EYi(Yi−xi)2 = `2/(d−1) and EYi |Yi−xi|3 =

O(d−3/2), we have

EYi

{
(Yi − xi)2 sup

yd(i)∈F+
d

∣∣∣∣∣M̂ (i)

xd
(Yi)− 2Φ

(
−`
√
Id(xd)

2

)∣∣∣∣∣
}

(83)

≤ `2

d− 1
sup
xd∈F+

d

∣∣∣∣∣∣2Φ

−`
√
R

(i)
d

2

− 2Φ

(
−`
√
Id(xd)

2

)∣∣∣∣∣∣ (84)

+O(d−3/2) sup
yd(i)∈F+

d

∣∣∣∣∣dM̂
(i)

xd
(yi)

dyi
(Yi)

∣∣∣∣∣ . (85)

For the last term, we have the following lemma.

Lemma A.7.

sup
i∈{1,...,d}

sup
yd(i)∈F+

d

∣∣∣∣∣dM̂
(i)

xd
(yi)

dyi
(Yi)

∣∣∣∣∣ = o
(
d1/2

)
. (86)

Proof. See Appendix B.5. �

The proof of Theorem 3.10 is completed by applying Lemma A.6 and Lemma A.7.
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B. Proof of Lemmas in Appendix A

B.1. Proof of Lemma A.1. For xd ∈ F+
d , by Taylor expansion and mean value theorem,

we have

| log π−i(Y−i |xi)− log π−i(x−i |xi)−m1(Y−i, x
d)| (87)

≤ sup
x̃d∈Rd

∣∣∣∣∣∣16
∑
j,k,l 6=i

∂3 log πd(x̃d)

∂xj∂xk∂xl
(Yj − xj)(Yk − xk)(Yl − xl)

∣∣∣∣∣∣ . (88)

In the above summation, the summation over the cases of j = k = l equals to

sup
x̃d∈Rd

∣∣∣∣∣∂3 log πd(x̃d)

∂x3j

∣∣∣∣∣O(dE|Yj − xj |3) = o(d1/2)O
(
d(
√
`2/(d− 1))3

)
= o(1). (89)

For the cases of j = k 6= l, we have∑
j=k 6=l

∂3 log π−i(x̃
d)

∂x2j∂xl
(Yj − xj)2(Yl − xl) =

∑
j

(Yj − xj)2
∑
l 6=k

∂3 log π−i(x̃
d)

∂x2j∂xl
(Yl − xl). (90)

By Assumption A3, we have E
∣∣∣∣∑j 6=l

∂3 log π−i(x̃d)
∂x2j∂xl

(Yl − xl)
∣∣∣∣ = O(ld/d)o(d/ld) = o(1) since

∂3 log πd(x̃d)
∂x2j∂xl

goes to zero when |k − i| > ld. Then, by E|Yj − xj |2 = O(1/d), the summation

over all cases of j = k 6= l equals to dOP(1/d)oP(1) = oP(1).
Finally, for j 6= k 6= l, it suffices to show

sup
x̃d∈Rd

∣∣∣∣∣∣
∑

j 6=k 6=l 6=i

∂3 log π−i(x̃
d)

∂xj∂xk∂xl
(Yj − xj)(Yk − xk)(Yl − xl)

∣∣∣∣∣∣ (91)

≤
∑

i 6=j 6=k 6=l

(
sup
x̃d∈Rd

∣∣∣∣∂3 log π−i(x̃
d)

∂xj∂xk∂xl

∣∣∣∣
)
|(Yj − xj)(Yk − xk)(Yl − xl)| = oP(1). (92)

Note that {|(Yj − xj)(Yk − xk)(Yl − xl)|}j 6=k 6=l are independent random variables which don’t
depend on the values of xj , xk, xl, and

|(Yj − xj)(Yk − xk)(Yl − xl)| = OP

(
(
√
`2/(d− 1))3

)
= OP(d−3/2). (93)

Therefore, the summation for cases j 6= k 6= l is oP(1) under Assumption A3. We have
proven the result for fixed i. Finally, it is easy to check the proof holds uniformly over
i ∈ {1, . . . , d}.

B.2. Proof of Lemma A.2.

Lemma B.1. (Quadratic Form of Gaussian Random Vector) If zd ∼ Nd(µ,Σ), then

E(zTAz) = tr(AΣ) + µTAµ, var(zTAz) = 2 tr(AΣAΣ) + 4µTAΣAµ. (94)
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Note that Y−i ∼ Nd−1(x−i, `2

d−1I) and (Y−i − x−i)T [∇2 log π−i](Y−i − x−i) is a quadratic
form of Gaussian random vector. By Lemma B.1,

E
[
(Y−i − x−i)T [∇2 log π−i](Y−i − x−i)

]
=

`2

d− 1

∑
j 6=i

∂2 log π−i
∂x2j

. (95)

Therefore, it suffices to show the variance of the quadratic form goes to zero. Using the
assumptions, the variance satisfies

2`4

(d− 1)2
tr
(
[∇2 log π−i][∇2 log π−i]

)
(96)

=
2`4

(d− 1)2

∑
j 6=i

∑
k 6=i

(
∂2 log π−i
∂xj∂xk

)2

(97)

≤ 2`4

(d− 1)2

d−1∑
l=0

∑
{j,k:|j−k|=l}

(
∂2 log πd

∂xj∂xk

)2

(98)

=
2`4

(d− 1)2

∑
l≤ld

∑
{j,k:|j−k|=l}

(
∂2 log πd

∂xi∂xj

)2

(99)

+
2`4

(d− 1)2

∑
l>ld

∑
{j,k:|j−k|=l}

(
∂2 log πd

∂xj∂xk

)2

(100)

≤ 2`4

(d− 1)2
(d− 1)ld sup

|j−k|≤ld
sup
xd∈F+

d

(
∂2 log πd

∂xj∂xk

)2

(101)

+
2`4

(d− 1)2
(d− 1)2 sup

|j−k|>ld
sup
xd∈F+

d

(
∂2 log πd

∂xj∂xk

)2

(102)

= O(ld/d)o(d/ld) + o(1) = o(1), (103)

where we have used supxd∈F+
d

sup|j−k|≤ld
∂2 log πd

∂xj∂xk
= o(

√
d/ld) from Assumption A1.



APPENDIX 33

B.3. Proof of Lemma A.3. Note that

R
(i)
d + S

(i)
d =

1

d− 1

∑
j 6=i

(
∂ log π−i
∂xj

)2

+
1

d− 1

∑
j 6=i

∂2 log π−i
∂x2j

(104)

=
1

d− 1

∑
j 6=i

{(
∂ log πd

∂xj

)2

+
∂2 log πd

∂x2j

}
(105)

=
1

d− 1

∑
j 6=i

{
1

(πd)2

(
∂πd

∂xj

)2

+
∂

∂xj

(
∂ log πd

∂xj

)}
(106)

=
1

d− 1

∑
j 6=i

{
1

(πd)2

(
∂πd

∂xj

)2

+
∂

∂xj

(
1

πd
∂πd

∂xj

)}
(107)

=
1

d− 1

∑
j 6=i

 1

(πd)2

(
∂πd

∂xj

)2

+
πd ∂

2πd

∂x2j
−
(
∂πd

∂xj

)2
(πd)2

 (108)

=
1

(d− 1)

∑
j 6=i

∂2πd

∂x2j

1

πd
. (109)

Next, we show E
[
supi(R

(i)
d + S

(i)
d )2

]
converges to 0. To prove this, consider writing

E
[
supi(R

(i)
d + S

(i)
d )2

]
as sum of (d− 1)2 terms

E
[
sup
i

(R
(i)
d + S

(i)
d )2

]
=

1

(d− 1)2

∫
sup
i

∑
j 6=i

∑
k 6=i

(
∂2πd

∂x2j

1

πd

)(
∂2πd

∂x2k

1

πd

)
πddxd (110)

≤ 1

(d− 1)2

d∑
j=1

d∑
k=1

∫ (
∂2πd

∂x2j

1

πd

)(
∂2πd

∂x2k

1

πd

)
πddxd − 2

(d− 1)2

∫
inf
i

∑
j 6=i

(
∂2πd

∂x2j

1

πd

)
πddxd

(111)

=
1

(d− 1)2

d∑
j=1

d∑
k=1

∫ (
∂2πd

∂x2j

1

πd

)(
∂2πd

∂x2k

1

πd

)
πddxd + o(1), (112)

where the last equality follows from

2

(d− 1)2

∫
inf
i

∑
j 6=i

(
∂2πd

∂x2j

1

πd

)
πddxd ≥ 2

(d− 1)2

∫
inf
i

∑
j 6=i

(
∂2 log π−i
∂x2j

)
πddxd (113)

=
2

(d− 1)2
o(d
√
d/ld) = o(1). (114)
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When |j − k| ≥ ld, by Assumption A2, we have∫ (
∂2πd

∂x2j

1

πd

)(
∂2πd

∂x2k

1

πd

)
πddxd (115)

=

∫ (
∂2πd

∂x2j

)(
∂2πd

∂x2k

)
1

πd
dxd (116)

=

∫ (
∂2πj,k|−j−k

∂x2j

)(
∂2πj,k|−j−k

∂x2k

)
1

πj,k|−j−k
π−j−kdx−j−kdxjdxk (117)

≤
∫ [

sup
xd∈Fd

∫ (
∂2πj,k|−j−k

∂x2j

)(
∂2πj,k|−j−k

∂x2k

)
1

πj,k|−j−k
dxjdxk

]
π−j−kdx−j−k (118)

→ 0. (119)

This implies E
[
supi(R

(i)
d + S

(i)
d )2

]
= O(d ld)+(d−ld)2o(1)

(d−1)2 +o(1)→ 0. Therefore, uniformly over

i, R
(i)
d + S

(i)
d → 0 in probability, then there exists a sequence {F ′d} such that P(R

(i)
d + S

(i)
d ∈

F ′d,∀i)→ 1 and the following holds

sup
i

sup
xd∈F ′d

∣∣∣R(i)
d + S

(i)
d

∣∣∣→ 0. (120)

B.4. Proof of Lemma A.6. Note that Assumption A4 implies

sup
i∈{1,...,d}

sup
xd∈F+

d

∂

∂xi
log πd(xd) = o

(
d1/2

)
. (121)

Then, by the definitions of R
(i)
d and Id(x

d), we have

R
(i)
d − Id(x

d) =
1

d− 1

∑
j 6=i

(
∂ log π−i(x−i |xi)

∂xj

)2

− 1

d

d∑
j=1

(
∂

∂xj
log πd(xd)

)2

(122)

=
1

d− 1

∑
j 6=i

(
∂ log πd(xd)

∂xj

)2

− 1

d

d∑
j=1

(
∂

∂xj
log πd(xd)

)2

(123)

=
1

d
R

(i)
d −

1

d

(
∂

∂xi
log πd(xd)

)2

→ 0. (124)

B.5. Proof of Lemma A.7. Recall that we have shown

M̂
(i)

xd
(Yi) = Φ

(
R

(i)
d (Yi)

−1/2
(
`−1 log

πd(yd(i))

πd(xd)
− `R(i)

d (Yi)/2

))
(125)

+ exp

(
log

πd(yd(i))

πd(xd)

)
Φ

(
−`R(i)

d (Yi)
1/2/2− log

πd(yd(i))

πd(xd)
R

(i)
d (Yi)

−1/2`−1
)
.

(126)
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For notational simplicity, we omit the index i and write R
(i)
d by Rd. To simplify the derivation,

we note that M̂
(i)

xd
(y) has the following form

M(y) = Φ

(
f(y)g(y)− 1

2
f−1(y)

)
+ exp(g(y))Φ

(
−1

2
f−1(y)− f(y)g(y)

)
, (127)

where f−1(y) := `R
1/2
d (y) and g(y) = log πd(yd(i))− log πd(xd). Taking the derivative with

respect to y, we get

dM(y)

dy
= Φ′(fg − f−1/2)

d

dy
(fg − f−1/2) (128)

+ exp(g)Φ′(−f−1/2− fg)
d

dy
(−fg − f−1/2) (129)

+ exp(g)

(
d

dy
g

)
Φ(−fg − f−1/2) (130)

≤ ‖Φ′‖∞
∣∣∣∣dfdy

g +
dg

dy
f − 1

2

df−1

dy

∣∣∣∣ (131)

+ exp(g)‖Φ′‖∞
∣∣∣∣dfdy

g +
dg

dy
f +

1

2

df−1

dy

∣∣∣∣ (132)

+ exp(g)

∣∣∣∣dgdy

∣∣∣∣ ‖Φ‖∞ (133)

Note that both Φ and Φ′ are bounded functions. It then suffices to show

exp(g)

∣∣∣∣dgdy

∣∣∣∣ = o(d1/2), exp(g)

∣∣∣∣dfdy
g

∣∣∣∣ = o(d1/2), (134)

exp(g)

∣∣∣∣dgdy
f

∣∣∣∣ = o(d1/2), exp(g)

∣∣∣∣df−1dy

∣∣∣∣ = o(d1/2). (135)

Observing that df−1

dy = 1
2`R

′
d/R

1/2
d and df

dy = − 1
2`

1
Rd

R′d
R

1/2
d

, if we can show

sup
i∈{1,...,d}

dR
(i)
d (y)

dy

1

[R
(i)
d (y)]1/2

= o(1), (136)



APPENDIX 36

then we can get df−1

dy = o(1) and df
dy = o(1/Rd). Using R

(i)
d → Id(x

d) from Appendix B.4, it

suffices to show(
sup
xd∈F+

d

πd(xd)

)sup
i

sup
xd∈F (i)

d

∂ log πd(xd)

∂xi

 = o(d1/2), (137)

(
sup
xd∈F+

d

πd(xd)

)(
sup
xd∈F+

d

∣∣∣log(πd(xd))/Id(x
d)
∣∣∣) = o(d1/2), (138)

(
sup
xd∈F+

d

πd(xd)

)sup
i

sup
xd∈F (i)

d

∣∣∣∣∂ log πd(xd)

∂xi
/
√
Id(xd)

∣∣∣∣
 = o(d1/2). (139)

One can easily verify that the above equations hold under Assumption A4.
Finally, we complete the proof by showing Eq. (136). Recall that

R
(i)
d (y) =

1

d− 1

∑
j 6=i

(
∂ log π−i(x−i |xi = y)

∂xj

)2

. (140)

For notational simplicity, we write

R
(i)
d (y) =

1

d− 1

∑
j 6=i

f2j (y), (141)

where fj(y) := ∂ log π−i(x−i |xi=y)
∂xj

. Then, by Cauchy–Schwartz inequality

∂R
(i)
d (y)

dy
=

2

d− 1

∑
j 6=i

fj(y)f ′j(y) ≤ 2

d− 1

√∑
j 6=i

f2j (y)
∑
j 6=i
|f ′j(y)|2. (142)

Note that by A1, if |i− j| > ld then f ′j(y) ≤ supxd∈Fd
∂2 log πd(xd)
∂xi∂xj

→ 0. Hence, we have

sup
i∈{1,...,d}

dR
(i)
d (y)

dy

1

[R
(i)
d (y)]1/2

≤ sup
i

2
d−1

√∑
j 6=i f

2
j (y)

∑
j 6=i |f ′j(y)|2√

1
d−1

∑
j 6=i f

2
j (y)

(143)

= 2 sup
i

√
1

d− 1

∑
j 6=i
|f ′j(y)|2 ≤ 2

√√√√ 1

d− 1

d∑
j=1

|f ′j(y)|2 = o

(√
ld
d

(
√
d/ld)2

)
= o(1). (144)

C. Proof of Theorem 3.19

Similar to Appendix A, we assume the coordinates are linear ordered for simplicity. The
proof follows the framework of [RGG97] using the generator approach [EK86].

Define the (discrete time) generator of xd by

(Gdf)(xd) : = dEY d
{

[f(Y d)− f(xd)]

(
1 ∧ π

d(Y d)

πd(xd)

)}
, (145)
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for any function f for which this definition makes sense. In the Skorokhod topology, it
doesn’t cause any problem to treat Gd as a continuous time generator. We shall restrict
attention to test functions such that f(xd) = f(x1). We show uniform convergence of Gd
to G, the generator of the limiting (one-dimensional) Langevin diffusion, for a suitable large
class of real-valued functions f , where, for some fixed function h(`),

(Gf)(x1) := h(`)

{
1

2
f ′′(x1) +

1

2
[(log π̃)′(x1)] f

′(x1)

}
, (146)

in which π̃ is a one-dimensional density of the first coordinate of πd. Since we have assumed
in A6 that (log π̃)′ is Lipschitz, by [EK86, Thm 2.1 in Ch.8], a core for the generator has
domain C∞c , which is the class of continuous functions with compact support such that all
orders of derivatives exist. This enable us to restrict attentions to functions fc ∈ C∞c such
that fc(x

d) = fc(x1).
Note that using Assumption A2+, and the assumption πd(F cd ) = O(d−1−δ), following

the arguments in the proof of Lemma A.3 we can get a stronger version of Lemma A.3 for

F ′d := {xd : supi |R
(i)
d + S

(i)
d | ≤ d

−δ}. Then using a union bound yields

P(Xd(bdsc) /∈ Fd ∩ F ′d,∃0 ≤ s ≤ t)→ 0. (147)

Therefore, for any fixed t, if d→∞ then the probability of all Xd(bdsc), 0 ≤ s ≤ t are in
Fd ∩ F ′d goes to 1. Since Fd ∩ F ′d ⊆ F

+
d ∩ F

′
d ⊆ F

+
d , it suffices to consider xd ∈ F+

d .

Note that Y d ∼ N (xd, `2

d−1I), we can write

(Gdfc)(x
d) = dEY1

{
[fc(Y1)− fc(x1)]EY−1

[
1 ∧ π

d(Y d)

πd(xd)

]}
, (148)

where EY−1 [·] is short for EY2,...,Yd |Y1 [·] and πd denotes the target distribution in d-dimension.
The goal is then to prove (Gdfc) converges to (Gfc).

Recall the definition Eq. (56), we omit the index to write M
(1)

xd
as Mxd , which is defined

by

Mxd(Y1) = EY−1

(
1 ∧ π

d(Y d)

πd(xd)

)
. (149)

Then we have previously shown in Eq. (79) that Mxd(Y1) can be approximated by

M̂xd(Y1) = Φ

(
Rd(Y1)

−1/2
(
`−1 log

πd(Y1, x−1)

πd(xd)
− `Rd(Y1)/2

))
(150)

+ exp

(
log

πd(Y1, x−1)

πd(xd)

)
Φ

(
−`Rd(Y1)1/2/2− log

πd(Y1, x−1)

πd(xd)
Rd(Y1)

−1/2`−1
)

(151)

For xd ∈ F+
d , some properties of M̂xd is given as follows.
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Lemma C.1. For M̂xd, we have

M̂xd(x1) = 2Φ

(
−
`R

1/2
d (x1)

2

)
, (152)

M̂ ′xd(x1) = Φ

(
−
`R

1/2
d (x1)

2

)
d[log π1(x) + log π−1(x−1 |x)]

dx
(x1) + o(1), (153)

M̂ ′xd(x1) = o(d1/2), sup
xd∈F+

d

M̂ ′′xd = o(d1/2). (154)

Proof. See Appendix C.1. �

Since fc(Y1)− fc(x1) is bounded, it suffices to show

EY1
{
d[fc(Y1)− fc(x1)]M̂xd(Y1)

}
→ (Gfc)(x1). (155)

Now using mean value theorem and Taylor expansion of EY1
{

[fc(Y1)− fc(x1)]M̂xd(Y1)
}

at

(Y1 − x1) yields

[fc(Y1)− fc(x1)]M̂xd(Y1) (156)

=

[
f ′c(x1)(Y1 − x1) +

1

2
f ′′c (x1)(Y1 − x1)2 +K(Y1 − x1)3

]
(157)

·
[
M̂xd(x1) + M̂ ′xd(x1)(Y1 − x1) +

1

2
M̂ ′′xd(x

′)(Y1 − x1)2
]

(158)

= f ′c(x1)M̂xd(x1)(Y1 − x1) +

[
1

2
f ′′c (x1)M̂xd(x1) + f ′c(x1)M̂

′
xd(x1)

]
(Y1 − x1)2 (159)

+

[
KM̂xd(x1) +

1

2
f ′′c (x1)M̂

′
xd(x1) +

1

2
M̂ ′′xd(x

′)f ′c(x1)

]
(Y1 − x1)3 (160)

+

[
1

4
M̂ ′′xd(x

′)f ′′c (x1) +KM̂ ′xd(x1)

]
(Y1 − x1)4 +

1

2
M̂ ′′xd(x

′)K(Y1 − x1)5, (161)

where K is a constant since fc has bounded third derivative. Note that both f ′c(x1) and

f ′′c (x1) are bounded as well. Therefore, taking expectation over Y1 and using M̂ ′
xd

(x1) =

o(d1/2), supxd M̂
′′
xd

= o(d1/2) in Lemma C.1, we have

EY1
{

[fc(Y1)− fc(x1)]M̂xd(Y1)
}

=

[
1

2
f ′′c (x1)M̂xd(x1) + f ′c(x1)M̂

′
xd(x1)

]
`2

d− 1
+ o(d−1).

(162)
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Finally, by Assumption A6, we have

f ′c(x1)M̂
′
xd(x1) +

1

2
f ′′c (x1)M̂xd(x1) (163)

= 2Φ

(
−
`R

1/2
d (x1)

2

)(
1

2
f ′′c (x1) +

1

2
f ′c(x1)

d[log π1(x) + log π−1(x−1 |x)]

dx
(x1)

)
(164)

= 2Φ

(
−
`R

1/2
d (x1)

2

)(
1

2
f ′′c (x1) +

1

2
f ′c(x1)

d log π1|−1(x |x−1)
dx

(x1)

)
(165)

→ 2Φ

(
−`I(xd)1/2

2

)(
1

2
f ′′c (x1) +

1

2
f ′c(x1)

d log π̃(x)

dx
(x1)

)
(166)

→ 2Φ

(
−`Ī

1/2

2

)(
1

2
f ′′c (x1) +

1

2
f ′c(x1)

d log π̃(x)

dx
(x1)

)
, (167)

which implies that EY1
{
d[fc(Y1)− fc(x1)]M̂xd(Y1)

}
→ (Gfc)(x1) where h(`) := 2`2Φ(−`

√
Ī/2).

C.1. Proof of Lemma C.1. The proof is quite tedious. In order to simplify the notations,
we first introduce the following lemma.

Lemma C.2. For the function M(y) defined by

M(y) = Φ

(
f(y)g(y)− 1

2
f−1(y)

)
+ eg(y)Φ

(
−1

2
f−1(y)− f(y)g(y)

)
, (168)

we have

dM(y)

dy
= Φ′(fg − f−1/2)

d

dy
(fg − f−1/2) (169)

+ egΦ′(−f−1/2− fg)
d

dy
(−fg − f−1/2) (170)

+ eg
(

d

dy
g

)
Φ(−fg − f−1/2). (171)
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d2M(y)

dy2
= Φ′′(fg − f−1/2)

[
d

dy
(fg − f−1/2)

]2
+ Φ′(fg − f−1/2)

d2

dy2
(fg − f−1/2) (172)

+ eg
(

d

dy
g

)
Φ′(−f−1/2− fg)

d

dy
(−fg − f−1/2) (173)

+ eg

{
Φ′′(−fg − f−1/2)

[
d

dy
(−fg − f−1/2)

]2
+ Φ′(−fg − f−1/2)

d2

dy2
(−fg − f−1/2)

}
(174)

+ eg
(

d

dy
g

)
Φ′(−fg − f−1/2)

d

dy
(−fg − f−1/2) (175)

+ Φ(−fg − f−1/2)

[
eg
(

d2

dy2
g

)
+ eg

(
d

dy
g

)2
]
. (176)

Furthermore, if g(x1) = 0, then we have

dM(y)

dy
(x1) =

(
Φ′(−f−1/2)

d

dy
(fg − f−1/2) (177)

+Φ′(−f−1/2)
d

dy
(−fg − f−1/2) (178)

+

(
d

dy
g

)
Φ(−f−1/2)

)
(x1) (179)

=

(
Φ′(−f−1/2)

d

dy
(−f−1) +

(
d

dy
g

)
Φ(−f−1/2)

)
(x1) (180)

= −Φ′
(
−f
−1(x1)

2

)
df−1(y)

dy
(x1) +

dg(y)

dy
(x1)Φ

(
−f
−1(x1)

2

)
. (181)

Remark C.3. Let g(y) = log πd(y,x−1)
πd(xd)

and f−1(y) = `R
1/2
d (y) then M̂xd(y) = M(y). /

Now substituting g(y) = log πd(y,x−1)
πd(xd)

and f−1(y) = `R
1/2
d (y) to Lemma C.2, we have

M̂xd(x1) = 2Φ

(
−
`R

1/2
d (x1)

2

)
, (182)

and

M̂ ′xd(x1) =
dM̂xd(y)

dy
(x1) (183)

=Φ

(
−
`R

1/2
d (x1)

2

)
d[log π1(x) + log π−1(x−1 |x)]

dx
(x1) (184)

− Φ′

(
−
`R

1/2
d (x1)

2

)
`

2R
1/2
d (x1)

R′d(x1). (185)
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Since Φ′ is bounded and by Eq. (136), R′d(x1)/R
1/2
d (x1)→ 0, therefore

Φ′

(
−
`R

1/2
d (x1)

2

)
`

2R
1/2
d (x1)

R′d(x1) = o(1). (186)

Also, M̂ ′
xd

(x1) = o(d1/2) since ∂ log πd

∂xi
= O(dα/2) = o(d1/2).

Now we prove supxd M̂
′′
xd

= o(d1/2). For simplicity, we keep the notations of f and g

(recall that g(y) = log πd(y,x−1)
πd(xd)

and f−1(y) = `R
1/2
d (y)) and use the results in Appendix B.5.

Since Φ,Φ′,Φ′′ are bounded, it suffices to bound all the following terms to be o(d1/2):[
d

dy
(fg − f−1/2)

]2
,

d2

dy
(fg − f−1/2), exp(g)

(
dg

dy

)
d

dy
(−fg − f−1/2), (187)

exp(g)

[
d

dy
(fg − f−1/2)

]2
, exp(g)

d2

dy
(fg − f−1/2), exp(g)

(
d2g

dy2

)
, exp(g)

(
dg

dy

)2

.

(188)

Next, we show that most of them can be verified using Assumption A4+, and the results in
Appendix B.5:[

d

dy
(fg − f−1/2)

]2
= O

( sup
xd∈F+

d

log πd(xd)O(dα/4) + sup
xd∈F+

d

∂ log πd

∂x1

)2
 (189)

= O
[
(dα/4 log d+ dα/2)2

]
= o(d1/2), (190)∣∣∣∣eg(dg

dy
)

d

dy
(−fg − f−1/2)

∣∣∣∣ = O

[
sup
xd∈F+

d

πd(xd) sup
xd∈F+

d

∂ log πd

∂x1

(
dα/4 log d+ dα/2

)]
(191)

= o(d1/2−αdα/2(dα/4 log d+ dα/2)) = o(d1/2), (192)∣∣∣∣∣exp(g)

[
d

dy
(fg − f−1/2)

]2∣∣∣∣∣ = o(d1/2−αdα) = o(d1/2), (193)

∣∣∣∣exp(g)

(
d2g

dy2

)∣∣∣∣ = O

[
sup
xd∈F+

d

πd(xd) sup
xd∈F+

d

∂2 log πd

∂x21

]
= o(d1/2−α)O(dα) = o(d1/2), (194)∣∣∣∣∣exp(g)

(
dg

dy

)2
∣∣∣∣∣ = O

[
sup
xd∈F+

d

πd(xd) sup
xd∈F+

d

(
∂ log πd

∂x21

)2
]

= o(d1/2−α)O(dα/2)2 = o(d1/2).

(195)

The only terms left are d2

dy (fg − f−1/2) and exp(g)d
2

dy (fg − f−1/2). Therefore, it suffices to

show

d2

dy
(fg − f−1/2) = O(dα). (196)
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Note that

d2

dy
(fg − f−1/2) =

d

dy
(f ′g + g′f − 1

2
df−1) (197)

=
d

dy

[
1

Rd

R′d

R
1/2
d

g +
1

R
1/2
d

g′ − 1

2

R′d

R
1/2
d

]
(198)

=
1

Rd

R′d

R
1/2
d

g′ +

(
1

Rd

R′d

R
1/2
d

)′
g +

1

R
1/2
d

g′′ +

(
1

R
1/2
d

)′
g′ − 1

2

(
R′d

R
1/2
d

)′
. (199)

Note that we have shown R′d = o(R
1/2
d ) in Appendix B.5. Similarly, we also can show using

Assumption A3+ that

R′′d =
1

d− 1
(
∑
j 6=1

fjf
′
j)
′ =

1

d− 1

∑
j 6=1

(f ′j)
2 +

1

d− 1

∑
j 6=1

fjf
′′
j (200)

≤ 1

d− 1

∑
j 6=1

(f ′j)
2 +

√
1

d− 1

∑
j 6=1

f2j

√
1

d− 1

∑
j 6=1

(f ′′j )2 (201)

= O(ld/d)o((
√
d/ld)

2) + o(R
1/2
d

√
ld/d(

√
d/ld)2) = o(R

1/2
d ), (202)

where fj(x) := ∂ log π−1(x−1 |x1=x)
∂xj

. Therefore R′′d = o(R
1/2
d ) as well. Finally, we can complete

the proof by verifying Eq. (196) using Assumption A4+ as follows.∣∣∣∣∣ 1

Rd

R′d

R
1/2
d

g′

∣∣∣∣∣ = O
(

1

Rd

)
o(1)O

(
sup
xd∈F+

d

∂ log πd

∂x1

)
= O(dα/4)o(dα/2) = o(dα), (203)

∣∣∣∣∣
(

1

Rd

R′d

R
1/2
d

)′
g

∣∣∣∣∣ = O

[
R′′dR

3/2
d + 3/2(R′d)

2R
1/2
d

R3
d

g

]
= O

[
1

R
3/2
d

(R′′dg)

]
(204)

= O(dα/4)o(1)O(dα/2) = o(dα), (205)∣∣∣∣∣ 1

R
1/2
d

g′′

∣∣∣∣∣ = O

(
sup
xd∈F+

d

∂2 log πd

∂x21

)
= o(dα), (206)

∣∣∣∣∣
(

1

R
1/2
d

)′
g′

∣∣∣∣∣ = O

(
1

2

1

R
3/2
d

R′dg
′

)
= o(1/Rd)O

(
sup
xd∈F+

d

∂ log πd

∂x1

)
= O(dα/4)o(dα/2) = o(dα),

(207)∣∣∣∣∣
(
R′d

R
1/2
d

)′∣∣∣∣∣ =

∣∣∣∣∣∣∣
R′′dR

1/2
d − 1

2(R′d)
2 1

R
1/2
d

Rd

∣∣∣∣∣∣∣ = O
(
R′′d/R

1/2
d

)
= o(1) = o(dα). (208)



APPENDIX 43

D. Proof of Theorem 3.21

We follow the same approach as in the proof of [RR16, Proposition 3]. The idea is to
follow the proof of Theorem 3.19 except in the proof of Eq. (79), we need a stronger version
of Lemma A.3 to determine the sequence of “typical sets” {F ′d}.

Given fixed time t, considering the sequence of “typical sets” {F ′d} defined by

F ′d := {xd : |Rd + Sd| ≤ d−δ}, (209)

where δ > 0 and we used Rd and Sd to denote R
(1)
d and S

(1)
d for simplicity. We need to

guarantee that when d is large enough, we always have Xd(bdsc) ∈ Fd ∩ F ′d,∀0 ≤ s ≤ t and

this happens for almost all starting state Xd
1 (0) = x. That is, defining

p(d, x) := P(X(bdsc) /∈ Fd ∩ F ′d, ∃0 ≤ s ≤ t |Xd
1 (0) = x), (210)

letting π1 denote the marginal stationary distribution for the first coordinate, we want to
show that for any given ε > 0, as d→∞

Px∼π1 [p(d, x) ≥ ε, infinite often] = 0. (211)

We prove it using Borel–Cantelli Lemma. Note that the application of Borel–Cantelli lemma
is valid since we have assumed all of the processes are jointly defined on the same probability
space as independent processes. First, note that

Ex∼π1 [p(d, x)] = dtPπd((Fd ∩ F ′d)c) = dtPπd(F cd ∪ (F ′d)
c) ≤ dtPπd(F cd ) + dtPπd((F ′d)c).

(212)

For any given ε > 0, we have

∞∑
d=2

P(p(x, d) ≥ ε) ≤
∞∑
d=2

Ex∼π1 [p(d, x)]

ε
(213)

≤ dt

ε

∞∑
d=2

Pπd(|Rd + Sd| > d−δ) +
dt

ε

∞∑
d=2

P(Xd /∈ Fd). (214)

By πd(F cd ) = O(d−2−δ), we have dt
∑∞

d=2 P(Xd /∈ Fd) < ∞. Now in order to use Borel–
Cantelli Lemma, the condition we need is that for some number of moments m such that

Pπd(|Rd + Sd| > d−δ) ≤ E|Rd + Sd|m

d−mδ
= dmδE|Rd + Sd|m = O(d−2−δ), (215)

which leads to
∑∞

d=2 P(p(x, d) ≥ ε) <∞. In order to obtain non-trivial conditions, we let

m = 5 and Assumption A2++ implies E|Rd + Sd|5 = O(d−2−6δ). We can then use this
sequence of typical sets {F ′d} in the proof of Theorem 3.19 to replace the sequence of {F ′d}
used in Lemma A.3. The residual proof follows the same as Theorem 3.19.
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E. Proof of Proposition 4.6

Note that we have the number of parameters d = n2 + n+ 2 in this example. The target
distribution (i.e. the posterior distribution) satisfies

πd(xd) = P(xd | {Yij}ni,j=1)

∝ ba

Γ(a)
A−a−1e−b/A

n∏
j=1

1√
2πA

e−
(µj−ν)

2

2A

n∏
i=1

1√
2πV

e−
(θij−µj)

2

2V
1√

2πW
e−

(Yij−θij)
2

2W .

(216)

Clearly, this model can be represented by the graphical model in Eq. (41). It can be easily
checked that the maximum number cliques any coordinate belongs to is n + 1 and the
cardinality of cliques is bounded by constant 2, so supk |Ck| = o(d/md) = o(n). Furthermore,
the target distribution clearly satisfies “flat tail” condition required by Proposition 4.3 since
all the conditional distributions are standard distributions. Therefore, the first equation in
A1, the first equation in A3, and A2 hold by Proposition 4.3.

Next, we verify A5 using Proposition 4.4. Note that this model can be represented by
the graphical model in Eq. (42) using K = 3 layers. In order to check the conditions in
Proposition 4.4, note that

log πd ∝ (−a− 1− n

2
) logA− b

A
−
∑

j(µj − ν)2

2A
−
∑

i,j(θij − µj)2

2V
−
∑

i,j(Yij − θij)2

2W
.

(217)

Observing that, under Xd = (ν,A, {µj}nj=1, {θij}ni,j=1) ∼ πd, we have

θij | Yij , µj ∼indep. N
(
Wµj + V Yij
W + V

,
V W

W + V

)
, i, j ∈ {1, . . . , n}, (218)

µj |
∑
i

θij , ν, A ∼indep. N
(∑

iAθij + V ν

nA+ V
,

AV

nA+ V

)
, i ∈ {1, . . . , n}, (219)

ν | µ̄, A ∼ N
(
µ̄,
A

n

)
, (220)

A | {µj}, ν ∼ IG

a+
n

2
, b+

1

2

∑
j

(µj − ν)2

 . (221)

Therefore, we have

∣∣∣∣∂ log πd

∂A

∣∣∣∣ =

∣∣∣∣∣b+ 1
2

∑
j(µj − ν)2

A2
−
a+ 1 + n

2

A

∣∣∣∣∣ = OP(d1/2). (222)
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since a+1+n/2
A →P

a+1+n/2
A0

= O(d1/2) and
∑

j(µj − ν)2 →P
∑

j(µj − µ̄)2 + A0
n = OP(d1/2).

Other coordinates can also be verified, which are shown as follows.(
∂ log πd

∂ν

)2

=

(
n(µ̄− ν)

A

)2

= OP

( n
A

)
= OP(d/n), (223)(

∂ log πd

∂µj

)2

=

(∑
i(θij − µj)
V

− µj − ν
A

)2

= (nA+ V )2
(
A
∑

i θij + V ν

nA+ V
− µj

)2

(224)

= OP

[
(nA+ V )2

AV

nA+ V

]
= OP(d/n), (225)(

∂ log πd

∂θij

)2

=

(
Yij − θij

V
− θij − µj

W

)2

= (W + V )2
(
V Yij +Wµj
W + V

− θij
)2

= OP(d/n2).

(226)

(227)

Therefore, A5 holds by Proposition 4.4. Finally, all the other conditions in A1, A3, and A4
can be verified in a similar way as in Section 4.1 for Example 4.1.
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