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Abstract. We introduce a new property of Markov chains, called variance
bounding. We prove that, for reversible chains at least, variance bounding is
weaker than, but closely related to, geometric ergodicity. Furthermore, vari-
ance bounding is equivalent to the existence of usual central limit theorems
for all L2 functionals. Also, variance bounding (unlike geometric ergodicity)
is preserved under the Peskun order. We close with some applications to
Metropolis-Hastings algorithms.
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1. Introduction.

Markov chain Monte Carlo (MCMC) algorithms are widely used in statistics, physics,

and computer science. Measures of how good an MCMC algorithm is include quantitative

bounds on convergence to stationarity (e.g. [34], [35], [14], [15]), qualitative convergence rates

such as geometric ergodicity (e.g. [40], [39], [32], [29]), the existence of central limit theorems

(e.g. [7], [40], [3], [10], [13], [2]), and bounds on asymptotic variance of estimators (e.g. [41],

[7], [22]).

In this paper, we introduce a new notion, variance bounding. Roughly, a Markov chain is

variance bounding if the asymptotic variances for functionals with unit stationary variance

are uniformly bounded (precise definitions are given below). We shall show that, for re-

versible chains at least, variance bounding is implied by geometric ergodicity, and conversely

if P is variance bounding then aI +(1−a)P is geometrically ergodic for all 0 < a < 1. More

importantly, we shall prove that a reversible Markov chain is variance bounding if and only

if all L2 functionals satisfy a usual central limit theorem, indicating that variance bounding
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is in some sense the “right” definition to use. We also prove that variance bounding is pre-

served under the Peskun partial ordering ([26], [40]) on Markov chains. Finally, applications

to Metropolis-Hastings algorithms are presented.

2. Variance Bounding.

Given a Markov chain kernel P on a state space (X ,F) with unique stationary distri-

bution π(·), we let {Xn} follow the kernel P in stationarity, so that P[Xn ∈ A] = π(A)

for all A ∈ F and n ∈ N ∪ {0}, and also P[Xn ∈ A |X0, . . . , Xn−1] = P (Xn−1, A) for all

A ∈ F and all n ∈ N. For a functional h : X → R (assumed throughout to be measurable),

the stationary variance is given by Varπ(h) = E[(h(X0) − E[h(X0)])
2], and the asymptotic

variance is given by

Var(h, P ) = lim
n→∞

1

n
Var

( n∑
i=1

h(Xi)
)
. (1)

If the Markov chain P is to be used to estimate the stationary expected value of h by
1
n

∑n
i=1 h(Xi), then Var(h, P ) is a measure of the Monte Carlo uncertainty of the estimate.

Thus, for MCMC algorithms, it is desirable to make Var(h, P ) as small as possible (cf. [40],

[7], [41], [23], [22]). This prompts the following definition.

Definition. P is variance bounding if there is K < ∞ such that Var(h, P ) ≤ K Varπ(h)

for all h : X → R. Equivalently, P is variance bounding if sup {Var(h, P ); h : X →
R, Varπ(h) = 1} < ∞.

Note that in the case where Varπ(h) = ∞, the required inequality holds automatically

for all K.

Variance bounding is a natural property, in that it offers some control over the asymptotic

variances Var(h, P ). We study its relation to more traditional MCMC properties below. For

most of our results, we assume that P is reversible with respect to π(·), i.e. that∫
x∈A

π(dx) P (x, B) =
∫

x∈B
π(dx) P (x, A) , A, B ∈ F . (2)

It follows from [16] (see also [3]) that for reversible chains and L2 functionals, the limit in

equation (1) always exists, though it may be infinite.
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3. Relation to geometric ergodicity.

Recall that a Markov chain kernel P with stationary distribution π(·) is geometrically

ergodic if there is ρ < 1 and M : X → [0,∞] π-a.e. finite (i.e., such that π{x ∈ X : M(x) <

∞} = 1), such that |P n(x, A) − π(A)| ≤ M(x) ρn for all A ∈ F , n ∈ N, and x ∈ X .

Geometric ergodicity is an often studied property (e.g. [40], [39], [32], [29]), which leads to

many useful results such as central limit theorems (see next section).

However, geometric ergodicity is an overly strong notion in that it requires, among other

things, that the Markov chain be aperiodic. Since estimates of functionals, and their variances

Var(h, P ), are essentially unaffected by periodicity considerations, it seems inappropriate to

demand aperiodicity. And indeed, many Markov chains are variance bounding despite being

periodic (e.g. the Markov chain P1 in Example 9 below).

We now explore the relation between geometric ergodicity and variance bounding. We

first show that for reversible chains, variance bounding is strictly weaker than geometric

ergodicity. (Proofs of all theorems are deferred until Section 7.)

Theorem 1. If P is reversible and geometrically ergodic, then P is variance bounding.

Next, we show that P is variance bounding if and only if any mixture of P with the

identity is geometrically ergodic. We write I for the identity kernel, i.e. the Markov chain

which never moves, so that I(x, {x}) = 1 for all x ∈ X .

Theorem 2. If P is reversible, then the following are equivalent:

(i) P is variance bounding.

(ii) aI + (1− a)P is geometrically ergodic for all 0 < a < 1.

(iii) aI + (1− a)P is geometrically ergodic for some 0 ≤ a < 1.

Corollary 3. If P is reversible, then for any fixed 0 ≤ a < 1, the following are equivalent:

(i) P is variance bounding.

(ii) aI + (1− a)P is variance bounding.

Section 6 below contains some applications of Theorems 1 and 2. We next note that if

P has holding probabilities uniformly bounded away from 0, then variance bounding and

geometrically ergodic are equivalent:

Theorem 4. If P is reversible and infx∈X P (x, {x}) > 0, then P is variance bounding if

and only if P is geometrically ergodic.
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As an application of Theorem 4, suppose P represents a random-walk Metropolis or

systematic-scan Metropolis-within-Gibbs algorithm on Rd, with proposal increment densities

positive in a neighbourhood of 0, whose target density t is C1 with ‖∇ log t(x)‖ ≥ δ > 0 for

all x ∈ X . It then follows as in [33] that the rejection probabilities P (x, {x}) are uniformly

bounded away from 0. Hence, by Theorem 4, variance bounding is equivalent to geometric

ergodicity in this case.

Similarly, the two notions are equivalent if the operator P is positive, i.e. if E[f(X0) f(X1)] ≥
0 for all measurable f : X → R when {Xn} is in stationarity:

Theorem 5. If P is reversible and positive, then P is variance bounding if and only if P

is geometrically ergodic.

As an application of Theorem 5, suppose P represents a data augmentation algorithm,

i.e. the x-coordinate (only) of a two-variable Gibbs sampler. It follows from Lemmas 3-1

and 3-2 of [18] that P is reversible and positive. Hence, by Theorem 5, variance bounding is

equivalent to geometric ergodicity in this case as well. (See also [11].)

In particular, the slice sampler (e.g. [25], [30], [24]) can be viewed as the x-coordinate

of a two-variable Gibbs sampler. (This holds for product slice samplers as well, since the

multiple auxiliary variables are conditionally independent and can be regarded as a single

auxiliary vector.) So, for any slice sampler, variance bounding is equivalent to geometric

ergodicity. For example, it is known [30] that the slice sampler is geometrically ergodic

whenever Q′(y) y1+ 1
α is non-increasing near 0, for some α > 1, where Q(y) is the measure

of the set where the target density value is at least y. It follows immediately that the slice

sampler is also variance bounding under these conditions.

In general, if P is variance bounding, then a slight modification of P is geometri-

cally ergodic. Specifically, following [36], let P
n

be the binomial modification of P , cor-

responding to doing an (independently chosen) random number Bn of steps from P , where

Bn ∼ Binomial(2n, 1/2). Thus, P
n

= 2−2n ∑2n
i=0

(
2n
i

)
P i. Call P geometrically ergodic if, as

usual, there is ρ < 1 and π-a.e. finite M : X → [0,∞] such that |P n
(x, A)−π(A)| ≤ M(x) ρn

for all A ∈ F , n ∈ N, and x ∈ X . Then we have the following.

Theorem 6. If P is reversible, then P is variance bounding if and only if P is geometrically

ergodic.

Remark. The stationary processes literature (e.g. [12], [2], [13]) defines many other mixing

conditions such as α-mixing, β-mixing, ρ-mixing, φ-mixing, etc. These conditions are related
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to usual Markov chain ergodicity conditions, e.g. φ-mixing is equivalent to uniform ergodicity,

exponentially-fast β-mixing is equivalent to geometric ergodicity, α-mixing is implied by

Harris ergodicity, etc. However, none of these mixing conditions is implied by variance

bounding, since the mixing conditions all require ergodicity, whereas periodic (and therefore

non-ergodic) chains can still be variance bounding.

4. Relation to Central Limit Theorems.

An important issue in MCMC is the existence of central limit theorems (e.g. [7], [40],

[3], [10], [13], [2]). Where central limit theorems are known to hold, they underpin practical

MCMC strategies for Monte Carlo error assessment (see e.g. [8]).

Say that a functional h : X → R with π(|h|) < ∞ (where π(f) =
∫
X f(x) π(dx)) satisfies

a usual central limit theorem (CLT) for a Markov chain P if as n →∞, the distribution of

n−1/2 ∑n
i=1[h(Xi)− π(h)] converges weakly to N(0, v), where (with {Xn} in stationarity)

v = Var(X0) + 2
∞∑
i=1

Cov(X0, Xi) < ∞ . (3)

(We say “usual” to distinguish this convergence from e.g. convergence to other distributions,

or other normalisations besides n−1/2; see also [7], [3], [27], [37].)

It is known ([12], Theorem 18.5.3; see also [3], [10]) that if P is geometrically ergodic,

then h satisfies a usual CLT provided π(|h|2+δ) < ∞ for some δ > 0. It was proven in [28],

following [16], that if P is geometrically ergodic and reversible, then h satisfies a usual

CLT whenever π(h2) < ∞. However, geometric ergodicity is an overly strong assumption;

for example, periodic Markov chains can never be geometrically ergodic but they can still

satisfy CLTs.

The following theorem shows that, for reversible Markov chains, variance bounding is

the “right” definition for CLTs, i.e. variance bounding (unlike geometric ergodicity) is the

weakest property which still guarantees usual CLTs for all L2 functionals. (We assume the

stationary distribution for P is unique, to avoid degenerate cases where the state space

breaks up into multiple closed subsets.)

Theorem 7. If P is reversible, with unique stationary distribution π(·), then P is variance

bounding if and only if every h : X → R with π(h2) < ∞ satisfies a usual CLT for P .

Remark. There are other results available (see e.g. [3] and the references therein) which

guarantee CLTs for specific functionals, rather than for all L2 functionals. However, often
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MCMC is used to generate samples from π(·) before it is decided which functionals are of

statistical interest. Thus, we find that it is most useful having results like Theorem 7 which

apply to all L2 functionals simultaneously.

5. Relation to the Peskun ordering.

The following partial order on Markov chain kernels was introduced by Peskun [26] for

finite state spaces, and later by Tierney [40] for general state spaces.

Definition. Let P1 and P2 be two Markov chain kernels on (X ,F), both having invariant

probability measure π. Then P1 dominates P2 off the diagonal, written P1 � P2, if P1(x, A) ≥
P2(x, A) for all x ∈ X and A ∈ F with x 6∈ A.

It was proved by Peskun [26] for finite state spaces, and then by Tierney [41] (see also

[23], [22]) for general state spaces, that if P1 � P2, and P1 and P2 are reversible with

respect to the same π(·), then Var(h, P1) ≤ Var(h, P2) for all h : X → R. That is, P1 is

“better” than P2, in the sense of being uniformly more efficient for estimating expectations of

functionals. Thus, it seems reasonable that any Markov chain property designed to indicate

good estimation should be preserved under the Peskun ordering. For the variance bounding

property, that is indeed the case:

Theorem 8. If P1 and P2 are both reversible with respect to π(·), and P1 � P2, and P2

is variance bounding, then P1 is variance bounding.

On the other hand, the corresponding property for geometric ergodicity does not hold,

indicating another advantage of variance bounding over geometric ergodicity:

Example 9. Let X = Z with π(m) = 2−|m| / 3. Define P1 by P1(x, x − 1) = 2/3 and

P1(x, x + 1) = 1/3 for x > 0, and P1(x, x− 1) = 1/3 and P1(x, x + 1) = 2/3 for x < 0, and

P1(0,−1) = P1(0, 1) = 1/2. Also, let P2 be the Metropolis algorithm for π(·) with proposal

distribution Q(x, x + 1) = Q(x, x − 1) = 1/2. (Thus, P2(x, x + 1) = P2(x, x) = 1/4 and

P2(x, x− 1) = 1/2 for x > 0; P2(x, x− 1) = P2(x, x) = 1/4 and P2(x, x + 1) = 1/2 for x < 0;

and P2(0,−1) = P2(0, 1) = 1/4 and P2(0, 0) = 1/2.) Then both P1 and P2 are reversible with

respect to π(·), and also P1 � P2. Furthermore, it follows as in Mengersen and Tweedie [19]

that P2 is geometrically ergodic, and hence variance bounding by Theorem 1. On the other

hand, P1 is periodic, and hence cannot be geometrically ergodic, even though P1 � P2. (Of

course, P1 is still variance bounding, by Theorem 8.)
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6. Application to Metropolis-Hastings algorithms.

We now consider Metropolis-Hastings algorithms ([20], [9]). We define a slight general-

isation, as follows. Given a reference measure ν(·) on X , with respect to which π(dx) =

t(x) ν(dx), and a non-negative (measurable) function q : X ×X → R with
∫
X q(x, y) ν(dy) ≤

1 for all x ∈ X , the sub-Metropolis-Hastings algorithm is the algorithm with transition kernel

Mq(x, dy) = α(x, y) q(x, y) ν(dy) + r(x) δx(dy) ,

where α(x, y) = min
(
1, t(y) q(y,x)

t(x) q(x,y)

)
, and r(x) = 1−

∫
X α(x, y) q(x, y) ν(dy) ≥ 0.

By construction, this algorithm is reversible with respect to π(·). It may be described

as follows. With probability
∫
X q(x, y) ν(dy), it performs the usual Metropolis-Hastings al-

gorithm with proposal density q(x, y) /
∫
X q(x, y) ν(dy). Otherwise, with probability 1 −∫

X q(x, y) ν(dy), it stays at its current state. If
∫
X q(x, y) ν(dy) = 1, then Mq is the usual

Metropolis-Hastings algorithm.

By direct inspection, noting that α(x, y) q(x, y) = min
(
q(x, y), t(y)

t(x)
q(y, x)

)
, we see the

following:

Proposition 10. For fixed ν(·) and t, if q1(x, y) ≥ q2(x, y) for all x, y ∈ X with x 6= y,

then Mq1 � Mq2 . (Hence, by Theorem 8, if Mq2 is variance bounding then so is Mq1 .)

Now, suppose Mq2 is variance bounding, and that q1(x, y) ≥ c q2(x, y) for all x 6= y, for

some c > 0. We can assume (by replacing c with min(c, 1) if necessary) that c ≤ 1. Then

Mcq2 = c Mq2 + (1 − c)I. Hence, by Corollary 3 (with a = 1 − c), Mcq2 is also variance

bounding. It then follows from Proposition 10 that Mq1 is also variance bounding. We

conclude:

Corollary 11. If q1(x, y) ≥ c q2(x, y) for all x, y ∈ X with x 6= y, for some c > 0, and if

Mq2 is variance bounding, then Mq1 is variance bounding.

Example 9 above shows that the analogous statement to Corollary 11 for geometric

ergodicity does not hold.

To continue, call a (measurable) function s : X → [0,∞) MT-good if it is symmetric,

positive, and continuous, with exponentially bounded tails, and with
∫∞
−∞ s(u) du = 1. Then

a result of Mengersen and Tweedie [19] (see also [32] for higher-dimensional analogs) says

that a random-walk Metropolis algorithm on X = R, with proposal density q(x, y) = s(y−x)

for some MT-good s, is geometrically ergodic provided the target density has exponentially

bounded tails. This is a very impressive result, but with the severe restriction that the
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proposal increments must correspond to a symmetric random walk. To improve this, we

make the following definition.

Definition. A proposal density function q : X × X → R is a uniformly minorised

increment distribution (UMID) if there is c > 0 and MT-good s : X → [0,∞) such that

q(x, y) ≥ c s(y − x) for all x, y ∈ X .

Combining Theorem 1 and Corollary 11 with the result of [19] immediately gives:

Corollary 12. Let t be a target density with exponentially bounded tails, and let q be a

UMID proposal density function. Then Mq is variance bounding.

Note that in Corollary 12, we do not need to assume that s has exponentially bounded

tails, since if not then we can simply replace s(x) by min (s(x), e−|x|) without affecting

the conclusion. Note also that Corollary 12 does not require the proposal density q to be

symmetric, nor to correspond to a random walk. (Similar generalisations are also available

for the multidimensional case, as in [32].)

As one application of Corollary 12, consider a Langevin (MALA) algorithm (see [33]),

with proposal density given by Q(x, ·) = N(x + 1
2
δ∇ log t(x), δ2) for some δ > 0. Now,

if the target density t is C1 with tails that are precisely exponential, then ∇ log t(x) is a

bounded function of x ∈ X , and it follows easily that q is UMID. We conclude:

Corollary 13. A Langevin algorithm for a C1 target density on X = R with exponential

tails is variance bounding.

As a final application, we consider a Metropolis-Hastings algorithm for a density t sup-

ported on (0,∞), with proposal distribution given by Q(x, ·) = N(x, xb) for some fixed b > 0.

That is, the variance of the proposal increment depends on the current state x ∈ X . (Related

models were considered in [31].)

If b > 2, then as x →∞ the proposal values will be farther and farther out in the tails, so

limx→∞ P (x, {x}) = 1. It follows as in [32], or by a simple capacitance argument (e.g. [17]),

that the resulting Markov chain is neither geometrically ergodic nor variance bounding. So,

we do not consider that case further here. (On the other hand, numerical simulations related

to [31] indicate that if t is e.g. a Cauchy distribution, then values b ≈ 2.7 may give fastest

numerical convergence, which is a separate but related issue.)

If b = 2, then the distribution Q(x, ·) equals the distribution of x + x Z, where Z ∼
N(0, 1). Taking logarithms (cf. [31]) gives rise to an equivalent chain which is an ordinary

random-walk Metropolis algorithm, with modified target density t̃(y) = ey t(ey), and with
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increment density f(u) equal to the density of log(1+Z) where Z ∼ N(0, 1). This increment

distribution is clearly UMID; indeed, we can simply let c s(u) = min (f(u), f(−u)). Hence,

by Corollary 12, the transformed chain – and hence also the original chain – is variance

bounding provided that t̃ has exponentially bounded tails.

Finally, suppose that 0 < b < 2. Then Q(x, ·) is the distribution of x + xb/2 Z, where

Z ∼ N(0, 1). Instead of logarithms, consider the transformation X 7→ Xa, where a = 1−b/2

(so 0 < a < 1). Then the proposal increment from x ∈ X transforms from xb/2 Z to

W = h(Z) ≡ [x + xb/2Z]a − xa = xa(1 + x−aZ)a − xa. Inverting this, Z = h−1(W ) =

xa((1 + Wx−a)1/a − 1). Now, the density of Z is g(z) = (2π)−1/2e−z2/2. Hence, for the

transformed chain, the proposal increment W has density

g
(
h−1(w)

)
(dw/dz)

=
e−h−1(w)2/2

√
2π a (1 + x−az)a−1

.

We compute that, as x → ∞, this expression converges to (2π)−1/2a−1e−(w/a)2/2, i.e. to

the density function of the N(0, a2) distribution. (Intuitively, this is because ( d
dx

xa)2xb =

a2x2a−2xb = a2 is constant, so the increment variance of the transformed chain is approxi-

mately stabilised.) Hence, for large enough x, and thus for all x by positivity and continuity,

the proposal density is UMID. Therefore, by Corollary 12, the transformed and original

chains are variance bounding provided that the transformed target density has exponen-

tially bounded tails.

7. Spectra and Theorem Proofs.

We now proceed to the proofs of the theorems. We begin by recalling some standard

notation. Let P be a Markov chain kernel with stationary distribution π(·) on a state space

(X ,F). For measurable f, g : X → R, write 〈f, g〉 =
∫
X f(x) g(x) π(dx), and ‖f‖ = 〈f, f〉1/2.

Let L2
0(π) = {f : X → R; π(f) = 0, π(f 2) < ∞}, and regard P as an operator acting on

L2
0(π), by (Pf)(x) =

∫
X f(y) P (x, dy). Write σ(P ) for the spectrum of the operator P acting

on L2
0(π) (see e.g. [4], [36]). If P is a reversible Markov chain, then P is a self-adjoint operator

with respect to 〈·, ·〉, and also σ(P ) ⊆ [−1, 1] (cf. [7], [1]). Theorem 2 of [28] says that if P is

reversible, then P is geometrically ergodic if and only if there is r < 1 with σ(P ) ⊆ [−r, r].

We have the following.

Theorem 14. If P is reversible, then P is variance bounding if and only if sup (σ(P )) < 1.
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Proof. Suppose first that sup (σ(P )) ≡ Λ < 1. Then by Proposition 1 of [36], Var(h, P ) ≤
2(1 − Λ)−1Varπ(h) for all h : X → R. Hence, P is variance bounding with constant

K = 2(1− Λ)−1 < ∞.

Conversely, suppose sup (σ(P )) = 1. Let E be the spectral measure for P (see e.g. [4],

[38], [7], [28], [36]), and let r < 1. Then E((r, 1]) is non-zero, so there is h ∈ L2
0(π) in

range of E((r, 1]). It follows similarly to Proposition 1 of [36] (cf. [16], [7]) that Var(h, P ) ≥
1

1−r
Varπ(h). Since this holds for any r < 1, it follows that suph∈L2

0(π) [Var(h, P ) / Varπ(h)] ≥
supr<1

1
1−r

= ∞. Hence, P is not variance bounding.

Proof of Theorem 1. If P is reversible and geometrically ergodic, then there is r < 1

with σ(P ) ⊆ [−r, r]. In particular, sup (σ(P )) ≤ r < 1, so P is variance bounding by Theo-

rem 14.

Proof of Theorem 2. (i) =⇒ (ii): Suppose P is variance bounding, and 0 < a < 1. Then

by Theorem 14, sup (σ(P )) < 1, i.e. there is c < 1 with σ(P ) ⊆ [−1, c]. On the other hand,

σ(aI + (1− a)P ) = {λ ∈ R s.t. (aI + (1− a)P − λI) is not invertible}

=
{
λ ∈ R s.t. (1− a)

(
P − λ− a

1− a
I
)

is not invertible
}

=
{
λ ∈ R s.t.

λ− a

1− a
∈ σ(P )

}
= {(a + (1− a)y) s.t. y ∈ σ(P )} ,

where the last equality follows by solving for λ in the equation y = λ−a
1−a

. Hence, since

σ(P ) ⊆ [−1, c], it follows that

σ(aI + (1− a)P ) ⊆ [a + (1− a)(−1), a + (1− a)c] = [2a− 1, a + (1− a)c] ⊆ [−r, r] ,

where r = max(|2a − 1|, a + (1 − a)c) < 1. Hence, by Theorem 2 of [28], aI + (1 − a)P is

geometrically ergodic.

(ii) =⇒ (iii): Immediate.

(iii) =⇒ (i): If aI + (1 − a)P is geometrically ergodic, then there is r < 1 with σ(aI +

(1− a)P ) ⊆ [−r, r]. But from the above,

σ(aI + (1− a)P ) =
{
λ ∈ R s.t.

λ− a

1− a
∈ σ(P )

}
so it follows that σ(P ) ⊆ [−r−a

1−a
, r−a

1−a
]. In particular, sup (σ(P )) ≤ r−a

1−a
< 1, so P is variance

bounding.
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Proof of Corollary 3. We see from the proof of Theorem 2 that

sup
(
σ(aI + (1− a)P )

)
= a + (1− a) sup (σ(P )) .

It follows that for 0 ≤ a < 1, sup (σ(aI + (1− a)P )) < 1 if and only if sup (σ(P )) < 1. The

result then follows from Theorem 14.

Proof of Theorem 4. If P is reversible and geometrically ergodic, then P is variance

bounding by Theorem 1. Conversely, suppose P is reversible and variance bounding, with

δ ≡ infx∈X P (x, {x}) > 0. Let S(x, A) = (1 − δ)−1(P (x, A) − δ 1x∈A). Then S is another

Markov chain kernel on X , and P = δ I+(1−δ)S. It follows that inf σ(P ) ≥ δ+(1−δ)(−1) =

2δ − 1 > −1. Also sup σ(P ) < 1 by Theorem 14. Hence there is r < 1 with σ(P ) ⊆ [−r, r],

so P is geometrically ergodic.

Proof of Theorem 5. Note that E[f(X0) f(X1)] = 〈f, Pf〉, so positivity is equivalent

to 〈f, Pf〉 ≥ 0 for all f ∈ L2
0(π). This implies that λ ≥ 0 for all λ ∈ σ(P ). Hence, using

Theorem 14,

P is geometrically ergodic ⇐⇒ sup{|λ| : λ ∈ σ(P )} < 1

⇐⇒ sup{λ : λ ∈ σ(P )} < 1

⇐⇒ P is variance bounding .

Proof of Theorem 6. Note that we can write P
n

= [1
2
(I +P )]n. Hence, the result follows

immediately from Theorem 2 (with a = 1/2).

Proof of Theorem 7. If P is variance bounding, then Λ ≡ sup (σ(P )) < 1. Let E be the

spectral measure for P , and let Eh the induced measure defined by

Eh(S) =
∫

X
h(x) (E(S)h)(x) π(dx) .

Then it follows (cf. [7]) that

σ2 ≡
∫ 1

−1

1 + λ

1− λ
Eh(dλ) ≤ 1 + Λ

1− Λ
< ∞ .
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It then follows from Kipnis and Varadhan [16] (see also [3]) that h satisfies a usual CLT

for P .

Conversely, if P is not variance bounding, then Λ = 1. It follows as in the proof of

Theorem 14 that E
(
(r, 1]

)
is non-zero for every r < 1. Since P has unique stationary

distribution, 1 6∈ σ(P ), so there must be infinitely many m ∈ N such that E
(
(1− 2−m, 1−

2−m−1]
)

is non-zero. Let m1 < m2 < . . . (so mi ≥ i) with E
(
(1−2−mi , 1−2−mi−1]

)
non-zero.

Let gi ∈ L2
0(π) be in the range of E

(
(1 − 2−mi , 1 − 2−mi−1]

)
, with ‖gi‖ = 1. Then spectral

theory implies that the {gi} are orthonormal, and furthermore Cov(gi, Pgi) = 〈gi, Pgi〉 ≥
1− 2−mi . Finally, let h =

∑∞
i=1 2−i/2gi. Then by orthonormality,

Varπ(h) = ‖h‖2 =
∞∑
i=1

(
2−i/2

)2
= 1 < ∞ .

On the other hand, with {Xn} in stationarity, again using orthonormality,

Cov(h(X0), h(Xn)) =
∞∑
i=1

2−i Cov(gi, P ngi)

≥
∞∑
i=1

2−i(1− 2−mi)n ≥
∞∑
i=1

2−i(1− 2−i)n .

Hence,
∞∑

n=0

Cov(h(X0), h(Xn)) ≥
∞∑
i=1

2−i
∞∑

n=0

(1− 2−i)n

=
∞∑
i=1

2−i[1− (1− 2−i)]−1 =
∞∑
i=1

2−i 2i =
∞∑
i=1

(1) = ∞ .

It follows that v in (3) is infinite, so h does not satisfy a usual CLT for P .

Proof of Theorem 8. Lemma 3 of Tierney [41] says that since P1 � P2, therefore P2−P1

is a positive operator. It follows that sup (σ(P2)) ≥ sup (σ(P1)). Hence, using Theorem 14

twice, if P2 is variance bounding, then sup (σ(P2)) < 1, so sup (σ(P1)) < 1, so P1 is variance

bounding. (Alternatively, by Theorem 4 of [41], Var(h, P1) ≤ Var(h, P2) ≤ K Varπ(h).)

Remark. The above theorems have all been proven for reversible chains only. However,

it seems likely that analogs of some of them (e.g. Theorem 1) carry over in some form to

non-reversible chains, about which various facts about convergence are known (see e.g. [6],

[18], [5], [23]). We leave this as an open problem for future work.
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8. Summary.

This paper defined a Markov chain to be variance bounding if the asymptotic variances

for functionals with unit stationary variance are uniformly bounded. For reversible chains,

we proved that this property is weaker than geometric ergodicity, but equivalent to aI +(1−
a)P being geometrically ergodic for all 0 < a < 1. Furthermore, in contrast to geometric

ergodicity, the variance bounding property: allows for periodicity; is equivalent to all L2

functionals satisfying a usual central limit theorem; and is preserved under the Peskun [26]

partial ordering on Markov chains. We also presented some applications to Metropolis-

Hastings MCMC algorithms, and showed how variance bounding could apply more easily

and more generally than geometric ergodicity.

Overall, we view these results as indicating that as a property to use in the study of

MCMC algorithms, variance bounding is similar to, but more convenient than, geometric

ergodicity. We hope that the notion of variance bounding can be used to further understand

Markov chains and MCMC algorithms in other contexts.

Acknowledgements. We thank the anonymous referee for many very helpful comments.
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