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Abstract. We consider a Gibbs sampler applied to the uniform distribution on a bounded
region R ⊆ Rd. We show that the convergence properties of the Gibbs sampler depend
greatly on the smoothness of the boundary of R. Indeed, for sufficiently smooth boundaries
the sampler is uniformly ergodic, while for jagged boundaries the sampler could fail to even
be geometrically ergodic.

1. Introduction.

This paper considers the use of Gibbs samplers applied to the uniform distribution

on a bounded open region R ⊆ Rd. We shall show that, subject to C2 smoothness of the

boundary of R, such Gibbs samplers are always uniformly ergodic. We shall also show that,

even with certain types of “pointy” boundaries, the Gibbs samplers are still geometrically

ergodic.

By way of contrast, it has recently been shown by Bélisle (1997) that if the boundary

of R is sufficiently irregular, then the Gibbs sampler can converge arbitrarily slowly. Our

results thus complement those of Bélisle.

We note that our interest in Gibbs samplers arises partially from our interest in

“slice sampler” or “auxiliary variable” algorithms, whereby sampling from a complicated

(d − 1)-dimensional density f is achieved by applying the Gibbs sampler to the uniform

distribution on the d-dimensional region underneath the graph of f . Thus, Gibbs samplers
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for uniform distributions promise to be a very important subject in the future. For further

details, see Higdon (1997), Damien et al. (1997), Mira and Tierney (1997), and Roberts

and Rosenthal (1997b).

We begin with some definitions. Let R ⊆ Rd be a bounded open connected region

in d-dimensional Euclidean space, and let π(·) be the uniform distribution on R (i.e.,

π(A) = λ(A∩R)/λ(R) for Borel sets A ⊆ Rd, where λ is d-dimensional Lebesgue measure).

Let X(0) be some random variable taking values in R. The random-scan Gibbs sampler

proceeds as follows. Given a point X(n) ∈ Rd, it chooses In+1 ∈ {1, 2, . . . , d} uniformly at

random. It then chooses X(n+1) uniformly from the one-dimensional set

{
(X(n)

1 , . . . , X
(n)
I−1, y,X

(n)
I+1, . . . , X

(n)
d ) ; y ∈ R

}
∩ R ,

i.e. from the intersection of R with a line through X(n) parallel to the ith coordinate axis.

This process is repeated for n = 0, 1, 2, . . ..

Remark. Other versions of this algorithm are available. For example, instead of choosing

a single coordinate In+1 to update, it is possible to update all d coordinates in sequence,

one at a time; this is the deterministic-scan Gibbs sampler. Also the Gibbs sampler may be

defined for non-uniform distributions, by sampling from the full conditional distributions

on the one-dimensional sets instead of sampling uniformly. For further details, see e.g.

Gelfand and Smith, 1990; Smith and Roberts, 1993; Tierney, 1994).

The random-scan Gibbs sampler algorithm thus implicitly defines Markov chain tran-

sition probabilities L(X(n+1) |X(n)). It is easily checked that the resulting Markov chain

is reversible with respect to π(·). Furthermore the Markov chain is easily seen to be π-

irreducible and aperiodic. Thus, from the general theory of Markov chains on general state

spaces (see e.g. Nummelin, 1984; Meyn and Tweedie, 1993; Tierney, 1994, Section 3), we

will have that

‖L(X(n))− π(·)‖ ≡ sup
A⊆Rd

|P(X(n) ∈ A)− π(A)| → 0 , n →∞ .

(Here ‖ · · · ‖ is the total variation distance metric.)
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A natural question is the rate at which this convergence takes place. It is shown by

Bélisle (1997) that, without further restrictions on R, this convergence can be arbitrarily

slow: for any sequence {bn} converging to 0, Bélisle shows that R and X(0) can be chosen

so that ‖L(X(n)) − π(·)‖ ≥ bn for all sufficiently large n. However, it is reasonable to

expect that if regularity conditions are imposed on R, then convergence will be faster.

Recall (cf. Meyn and Tweedie, 1993; Tierney, 1994) that a Markov chain with state

space X and stationary distribution π(·) is geometrically ergodic if there is ρ < 1, a subset

X0 ⊆ X with π(X0) = 1, and M : X0 → R such that

‖L(X(n) |X(0) = x0)− π(·)‖ ≤ M(x0)ρn , n ∈ N, x0 ∈ X0 .

The chain is uniformly ergodic if it is geometrically ergodic with M constant (or, equiv-

alently, with M bounded above). We note that geometric or uniform ergodicity ensures

that the chain does not converge arbitrarily slowly in the sense of Bélisle.

In this paper, we shall show that for certain regions R (for example, if the boundary

of R is C2), the corresponding Gibbs sampler is uniformly ergodic (Section 2). For slightly

less regular regions R, the Gibbs sampler is still geometrically ergodic (Section 3).

2. Uniform ergodicity.

In this section we shall derive conditions on R which ensure uniform ergodicity of the

corresponding random-scan Gibbs sampler for the uniform distribution on R.

We recall (see e.g. Nummelin, 1984; Meyn and Tweedie, 1993) that, given a Markov

chain on a state space X , a subset C ⊆ X is small (or, (n0, a, ν)-small) if for some n0 ∈ N,

a > 0, and probability distribution ν(·) on X , we have

Pn0(x, ·) ≥ a ν(·) , x ∈ C .

We note that if B ⊆ C and C is small, then B is also small (with the same n0, a, and

ν). We further recall (cf. Meyn and Tweedie, 1993, Theorem 16.0.2) that a Markov chain

is uniformly ergodic if and only if the entire state space X is small, i.e. if and only if the

above condition is satisfied with C = X .

We begin with a simple lemma.

3



Lemma 1. Let R be a bounded region in Rd, and let C be a d-dimensional rectangle which

lies entirely inside R. Then C is small for the Gibbs sampler on the uniform distribution

on R (with either random- or deterministic-scan).

Proof. If C has widths a1, a2, . . . , ad, and if R is bounded by a rectangle with widths

A1, A2, . . . , Ad, then the deterministic-scan Gibbs sampler starting inside C is clearly at

least
∏

i
ai

Ai
times the uniform measure on C. For random-scan, we just need an extra

factor of d!/dd, which is the probability that the first d directions chosen include each

direction precisely once. We thus obtain that

PDS(x, ·) ≥

(
d∏

i=1

ai

Ai

)
UC(·) ; and PRS(x, ·) ≥ (d!/dd)

(
d∏

i=1

ai

Ai

)
UC(·) ,

where PDS and PRS are the deterministic-scan and random-scan Gibbs samplers, respec-

tively, and where UC is the uniform distribution on C.

To make use of this lemma, we require a general result about small sets. (A similar

result is presented in Meyn and Tweedie, 1993, Proposition 5.5.5 (ii).)

Proposition 2. For an irreducible aperiodic Markov chain, the finite union of small sets

(each of positive stationary measure) is small.

Proof. By induction, it suffices to consider just two small sets. Suppose that C1 is

(n1, ε1, ν1)-small, and that C2 is (n2, ε2, ν2)-small.

By irreducibility, since π(C2) > 0, there is m ∈ N and δ > 0, such that ν1P
m(C2) ≡∫

R
Pm(x, C2)ν1(dx) ≥ δ. It follows that Pn1+m+n2(x, ·) ≥ ε1δε2ν2(·) for x ∈ C1. Also

Pn2(x, ·) ≥ ε2ν2(·) ≥ ε1δε2ν2(·) for x ∈ C2. Thus,
∞∑

n=1
Pn(x, ·) ≥ ε1δε2ν2(·) for x ∈ C1∪C2.

Hence, C1 ∪ C2 is “petite” in the sense of Meyn and Tweedie (1993, p. 121).

But then by irreducibility and aperiodicity, it follows (cf. Meyn and Tweedie, 1993,

Theorem 5.5.7) that C1 ∪ C2 must be small.
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We now put these results together. For x ∈ Rd, we shall write B(x, ε) for the open

L∞ cube centered at x of radius ε, i.e.

B(x, ε) =
{
y ∈ Rd ; xi − ε < yi < xi + ε , i = 1, 2, . . . , d

}
.

Theorem 3. Let R be a bounded open connected region in Rd. Let Rε be the set of all

x ∈ R such that B(x, ε) lies entirely inside R; that is,

Rε = {x ∈ Rd ; B(x, ε) ⊆ R} .

Then Rε is small for the random-scan Gibbs sampler for the uniform distribution on R.

Proof. Let K be the closure of Rε. Then K is compact, and dist(K, RC) ≥ ε/2 > 0. Put

an open L∞ cube of radius ε/2 around each point of K. By compactness, K is contained

in a finite union of these open L∞ cubes, i.e. K ⊆ B(x1, ε/2) ∪ . . . ∪ B(xr, ε/2) for some

x1, . . . ,xr ∈ K. By the lemma, each B(xi, ε/2) is small. By the proposition, their finite

union is also small (since the connectedness of R implies the irreducibility of the Gibbs

sampler). Since K is contained in this finite union, and since Rε ⊆ K, therefore K and Rε

are small, too.

From this immediately follows

Theorem 4. Let R be a bounded open connected region of Rd. Suppose there is m ∈ N,

ε > 0 and δ > 0 such that

Pm(x, Rε) ≥ δ , x ∈ R

(where P is the corresponding random-scan Gibbs sampler). Then P is uniformly ergodic.

Proof. From the previous theorem, we have Pn0(x, ·) ≥ aν(·) for all x ∈ Rε, for some

n0, a > 0, and ν(·). But then Pn0+m(x, ·) ≥ δaν(·) for all x ∈ R. The result follows.

We conclude this section by studying a particular case in which we can verify the

conditions of the above theorem, namely for regions R whose boundaries are sufficiently
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smooth. We begin by showing that all such regions have the property that there is a fixed

a > 0 such that every point in their closure is contained in some ball of radius a lying

entirely inside the region. Intuitively, by rolling a radius-a soccer ball around the interior

of R, we could touch every point in the closure of R.

Lemma 5. Let R be a bounded open region in Rd whose boundary is a (d−1)-dimensional

C2 manifold. Write R for the closure of R. For x ∈ R, let

η(x) = sup{r > 0;x ∈ D(y, r) for some y ∈ R such that D(y, r) ⊆ R} ,

where D(y, r) = {z ∈ Rd;
d∑

i=1

(zi − yi)2 < r2} is an L2-ball centered at y. Then there is

a > 0 such that η(x) > a for all x ∈ R.

Proof. It clearly suffices to consider only points x ∈ ∂R, where ∂R is the boundary of R:

indeed we have inf
x∈R

η(x) = inf
x∈∂R

η(x), since any x ∈ R which is not in one of the radius-a

circles touching the boundary is at least a distance a away from all boundary points.

Since ∂R is C2, for each x ∈ ∂R the curvatures of all geodesics in ∂R passing through

x have a finite supremum K(x). Furthermore, by compactness of ∂R, there is K < ∞

such that K(x) ≤ K for all x ∈ ∂R. This means that, given an L2 ball of radius ≤ 1/K

which is tangent to ∂R at x, the boundary ∂R does not curve enough to intersect this ball

at any point of ∂R (aside from x itself) whose geodesic distance to x along ∂R is ≤ 1/K.

That is, such L2 balls can only intersect ∂R at x and at points whose geodesic distance

to x along ∂R is at least 1/K. Now, by compactness there is a positive smallest distance

from x to the other points of intersection. We conclude that η(x) > 0, for each x ∈ ∂R.

To continue, we write S(x, r) for the L2 ball (i.e., sphere) of radius r which is tangent

to ∂R at the point x ∈ ∂R. Now, since ∂R is a manifold, therefore each x ∈ ∂R has a

neighbourhood N (x) on which ∂R is diffeomorphic to Rd−1. If y ∈ ∂R is sufficiently close

to x, then S(y, η(x) − δ) is entirely contained in the union of N (x) and S(x, η(x)) (for

appropriate small δ). But from this it follows that lim inf
y→x

η(y) ≥ min(η(x), 1/K).

Hence, we see that the function min(η(x), 1/K) is both positive and lower semi-

continuous on x ∈ ∂R. Hence, again by compactness, it has a positive minimum on ∂R.

The result follows.
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To make use of this lemma, we need a second lemma.

Lemma 6. Consider the random-scan Gibbs sampler for the uniform distribution on

R ⊆ Rd. Suppose there is a > 0 such that η(x) ≥ a for all x ∈ R, with η(x) as in the

previous lemma. Then for any fixed sufficiently small ε > 0, there is δ > 0 such that

P (x,Rε) ≥ δ for all x ∈ R.

Proof. Given x ∈ R, let y ∈ R be such that x ∈ D(y, a) ⊆ R. (Such y exists since

η(x) ≥ a.) Let u = y−x
|y−x| be the unit vector from x towards y.

Now, we have
d∑

i=1

(ei · u)2 = 1, where {ei} are the standard unit basis. Hence there is

some coordinate i with ei · u ≥ 1/
√

d. It follows that there are δ′ > 0 and a′ < a which

depend on d but not on x, such that if the chain starts at x and updates the ith coordinate,

it has probability at least δ′ of ending up within a′ of y. Hence, since we had probability

1/d of choosing to update the ith coordinate, it follows that P (x, D(y, a′)) ≥ δ′/d, for

all x ∈ R. Also, note that D(y, a′) ⊆ Rε with ε = a − a′. Hence, setting δ = δ′/d and

ε = a− a′, the result follows.

Remark. This lemma makes use of the fact that we are using the random-scan Gibbs

sampler. For the deterministic-scan Gibbs sampler, the situation is in fact more compli-

cated. For example, suppose R ⊆ R2 contains the unit ball in R2, and also contains an

open neighbourhood of the point (10,−1). Suppose the deterministic-scan Gibbs sampler

begins at the point (0,−0.99), and first updates the x coordinate. This could bring it

to near (10,−1) or some other far-away point, and this is very difficult to control. (By

contrast, for the random-scan Gibbs sampler, we would have probability 1/2 of updat-

ing the y coordinate first, in which case we might happily move to near the origin, and

thus definitely be inside Rε.) On the other hand, if R is assumed to be convex, then no

such difficulties arise, and our proof goes through with minor changes to the case of the

deterministic-scan Gibbs sampler.

Combining the above lemma with our previous theorem, we immediately obtain
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Theorem 7. Let R be a bounded open connected region in Rd, whose boundary is a

(d − 1)-dimensional C2 manifold (or, such that η(x) ≥ a > 0 for all x ∈ R as in the

above lemma). Then the random-scan Gibbs sampler for the uniform distribution on R is

uniformly ergodic.

Remarks.

1. Based on this theorem, it is not surprising that the slowly-mixing examples studied

by Bélisle (1997) involve regions which do not have C2 boundaries (see for example

his Figure 3).

2. This theorem is somewhat analogous to results about the spectral gap of the Laplacian

for Brownian motion in a region; see e.g. Bañuelos and Carroll (1994) and references

therein.

Finally, we note the following. Even if we do not have η(x) ≥ a > 0 for all x ∈ R,

we may still have uniform ergodicity. For example, if the boundary of R has some non-

differentiable “pointy” regions (e.g. the vertices, if R is an irregular polygon), but if these

pointy regions are angled such that their apexes each contain some coordinate direction

(i.e. some line segment parallel to some coordinate axis), then the conditions of Theorem

4 are still satisfied since there is probability bounded away from 0 of leaving the pointy

region in a single step. (Similarly, if the apex boundary is exactly parallel to a coordinate

direction, then there is probability bounded away from 0 of leaving in two steps.) However,

if the pointy regions are “tilted” so that their apex does not contain a coordinate direction,

not even on its boundary, then the chain is clearly not uniformly ergodic: indeed, the closer

the chain is to the vertex point, the longer it will take the chain to move away from this

point. Nevertheless, we shall see in the next section that such chains are still geometrically

ergodic.
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3. Geometric ergodicity.

In this section we consider regions R ⊆ Rd which do not have a C2 boundary. For such

regions, the results of the previous section do not apply. And, indeed, the Gibbs samplers

for such regions may not be uniformly ergodic in general. However, we are able to show

that they are still geometrically ergodic, in certain cases. For simplicity we concentrate

primarily on the two-dimensional case d = 2, though we also provide one three-dimensional

result.

We begin with the case where R is a triangle. We recall from the previous section that,

if the triangle is such that all vertices have apex which contains a coordinate direction,

then the associated Gibbs sampler is uniformly ergodic. Thus, we instead consider the

case where one of the vertices is “tilted” and does not contain a coordinate direction.

Proposition 8. Let R ⊆ R2 be the width-1 triangle with lower angle θ, and upper angle

φ, i.e.

R =
{
(x, y) ∈ R2; 0 < x < 1, x tan(θ) < y < x tan(φ)

}
,

where 0 < θ < φ < π/2. Then the Gibbs sampler (with either random- or deterministic-

scan) for the uniform distribution on R is geometrically ergodic.

Proof. We recall from the previous section that the subset C = {(x, y) ∈ R; y > tan(φ)}

(say) is small for the Gibbs sampler. Thus, by standard Markov chain theory (see e.g.

Nummelin, 1984; Meyn and Tweedie, 1993, Theorem 15.0.1), we will be done if we can

find a drift function V : R → [1,∞) and λ < 1 such that

PV (x, y) ≡
∫

R

V (z)P ((x, y), dz) ≤ λ V (x, y) , (x, y) ∈ R, y < tan(φ) .

To continue, we consider the drift function V (x, y) = 1/x. To compute PV (x, y), for

ease of computation we shall focus on the deterministic-scan Gibbs sampler on R which

updates first the y coordinate and then the x coordinate, rather than on the random-scan

Gibbs sampler. This is not a restriction since it is known (see e.g. Roberts and Rosenthal,

1997a, Proposition 5) that if the deterministic-scan Gibbs sampler is geometrically ergodic,

then so is the random-scan Gibbs sampler.
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We compute that, for the deterministic-scan Gibbs sampler,

PV (x, y) =
1

x tan(φ) − x tan(θ)

∫ x tan(φ)

x tan(θ)

1
w cot(θ) − w cot(φ)

∫ w cot(θ)

w cot(φ)

V (z, w) dz dw

= λ V (x, y) ,

where

λ = λ(θ, φ) = [log(cot(θ)/ cot(φ))]2 / [(tan(φ)− tan(θ)(cot(θ)− cot(φ))] .

(Note that we actually have equality here, even though we only require an inequality.)

Now, we have λ(θ, φ) < 1 whenever 0 < θ < φ < π/2; indeed, if we set f(ε) = λ(θ, θ + ε),

then to second order in ε, as ε → 0+, we have

f(ε) ≈ 1− ε2/(3 sin2(2θ)) < 1 .

The geometric ergodicity follows.

It is possible to combine Proposition 8 with the results of Section 2. For example, we

have

Theorem 9. Suppose R is a region in R2 whose boundary is a 1-dimensional C2 manifold

except at a finite number of points. Suppose further that in a neighbourhood of each of

these exceptional points, R coincides with a triangle (as in Proposition 8). Then the

random-scan Gibbs sampler for the uniform distribution on R is geometrically ergodic.

Proof. (Outline.) As noted at the end of Section 2, the Gibbs sampler is uniformly

ergodic except near those exceptional points whose vertices are “tilted”, i.e. have apexes

which do not contain any coordinate direction. For such tilted vertices, it is possible to

choose ε > 0 small enough that R \Rε breaks up into a finite number of connected compo-

nents, one near each exceptional point, such that it is impossible to get from one of these

components to another in a single step. Once we have done that, then we define a drift

function V to be equal to 1 on Rε, and equal to the appropriate drift function (as in the
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proof of Proposition 8) on each of the different connected components of R \ Rε. Then,

separately from each connected component, the Gibbs sampler has geometric drift back to

the small set Rε. Hence, as in Proposition 8, the result follows.

Similar results are available for higher-dimensional regions R having “vertices” on the

boundary. We illustrate this with a particular example, a “tilted cone” with base at the

origin, tilted so that it does not contain any coordinate direction.

Proposition 10. Suppose R ⊆ R3 is the tilted cone

R =
{

(x, y, z) ∈ R3; 0 < x < 1, z2 +
(αx− y)2

1 + α2
< c

(x + αy)2

1 + α2

}
,

for some α > 0 and 0 < c < 1. Then the Gibbs sampler (with either random- or

deterministic-scan) for the uniform distribution on R is geometrically ergodic.

Proof. We use the same drift function V (x, y, z) = 1/x as before. We consider the

deterministic-scan Gibbs sampler which updates first z, then y, and then x. (The corre-

sponding result for the random-scan Gibbs sampler then follows once again from Roberts

and Rosenthal, 1997a, Proposition 5.) Clearly updating z does not change the value of V ,

so it suffices to consider the effect of updating x and y conditional on a fixed value of z.

Now, conditional on z = 0, the point (x, y) is restricted to the triangle

R ∩ {z = 0} =
{
(x, y, 0) ∈ R3; x tan(θ) < y < x tan(φ)

}
,

for some 0 < θ < φ < π/2. Furthermore, conditional on a particular value of z 6= 0,

the point (x, y) is restricted to a hyperbola lying inside (and asymptotic to) the triangle

R ∩ {z = 0}, whose proximity to this triangle depends on z.

To proceed, let Pz0 be the two-dimensional random-scan Gibbs sampler for the uniform

distribution on R ∩ {z = z0}, i.e. which acts on the coordinates x and y while leaving the

value of z fixed at z = z0. Then P0 is the usual two-dimensional random-scan Gibbs

sampler on the triangle R ∩ {z = 0}, and hence by Proposition 8, P0 is geometrically

ergodic with P0V (x, y, z) ≤ λV (x, y, z) for some λ < 1.
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Now, we claim that for any choice of z0 ∈ R such that R∩ {z = z0} is non-empty, we

have Pz0V (x, y, z0) ≤ P0V (x, y, z0). Indeed, for fixed z0 we have

Pz0V (x, y, z) =
1

y2(x)− y1(x)

∫ y2(x)

y1(x)

1
x2(w)− x1(w)

∫ x2(w)

x1(w)

(1/z) dz dw , (†)

where y1(x), y2(x), x1(w), and x2(w) are defined by

R ∩ {(x, t); t ∈ R} = {(x, t); y1(x) < t < y2(x)} ;

and

R ∩ {(t, w); t ∈ R} = {(t, w);x1(x) < w < x2(x)} .

It is furthermore verified that there are functions d(x) and D(y) (which also depend on θ,

φ, and z0) such that

y1(x) = x cot(θ) + d(x); y2(x) = x cot(φ)− d(x);

x1(y) = y tan(φ) + D(y); x2(y) = y tan(θ)−D(y);

that is, the interval (x1(y), x2(y)) is symmetrically embedded in the interval (y cot(φ), y cot(θ))

(and similarly for (y1(x), y2(x)).

To show that Pz0V ≤ P0V , we observe that, for fixed 0 < a < b and 0 ≤ k < (b−a)/2,

the quantity 1
b−a−2k

b−k∫
a+k

(1/z)dz as a function of k is maximised at k = 0. Applying this

observation twice to (†) shows that Pz0V (x, y, z) ≤ P0V (x, y, z) as desired.

It follows that the deterministic-scan Gibbs sampler on R is again geometrically er-

godic, with at least as small a value of λ as the corresponding value from Proposition 8.

Finally, we turn our attention to showing that certain Gibbs samplers are not geomet-

rically ergodic. We begin with a result, following Lawler and Sokal (1988), which may be

viewed as a generalisation of Roberts and Tweedie (1996, Theorem 5.1).

12



Lemma 11. Let P (x, ·) be the transition probabilities for a Markov chain on a state

space X , having stationary distribution π(·). Suppose that, for any δ > 0, there is a subset

A ⊆ X with 0 < π(A) < 1 such that∫
A

P (x, AC)π(dx)
π(A)π(AC)

< δ .

Then the Markov chain is not geometrically ergodic.

Proof. We use the notion of conductance or Cheeger’s constant, as in Lawler and Sokal

(1988). Recall that this is defined by

K = inf
A⊆R

∫
A

P (x, AC)π(dx)
π(A)π(AC)

,

where the infimum is taken over all measurable subsets of R, and the integral is taken with

respect to the stationary distribution π(·). It follows from Lawler and Sokal (1988) that for

a reversible Markov chain (such as the random-scan Gibbs sampler), we have K > 0 if and

only if the Markov chain is geometrically ergodic. But the hypothesis of the proposition

imply that K = 0. Hence the chain is not geometrically ergodic.

Now, Proposition 8 considers the case where R ⊆ R2 has a pointed vertex which

subtends a positive angle. One can still ask about the case where R has a “sharpened”

vertex, i.e. a vertex whose two adjoining boundary curves are asymptotically tangent.

For such a case, it turns out that the Gibbs sampler is not geometrically ergodic, as the

following result shows.

Proposition 12. Let R ⊆ R2 be the width-1 “sharpened” triangle with lower angle θ

and power α, i.e.

R =
{
(x, y) ∈ R2; 0 < x < 1, x tan(θ) < y < (x + xα) tan(θ)

}
,

where 0 < θ < π/2 and 1 < α < ∞. Then the Gibbs sampler (with either random- or

deterministic-scan) for the uniform distribution on R is not geometrically ergodic.
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Proof. We shall show the result for the random-scan Gibbs sampler; the result for the

deterministic-scan Gibbs sampler then follows from e.g. Roberts and Rosenthal (1997a,

Proposition 5).

We shall apply Lemma 11. To that end, let A ⊆ R be defined by

A = {(x, y) ∈ R; y < (ε + εα) tan(θ)} ,

where ε > 0. Then we note that for (x, y) ∈ A, we have P
(
(x, y), AC

)
= 0 unless x > ε.

Now, it is seen by inspection that

π{(x, y) ∈ A; x > ε} = ε2α tan(θ) / |R| .

Hence, ∫
A

P (x, AC)π(dx) ≤
∫
A

1{x>ε}(z)π(dz) = ε2α tan(θ) / |R| .

On the other hand, we have

π(A) >

∫ ε

0

tan(θ) tαdt / |R| = tan(θ) εα+1 / (α + 1)|R| .

It follows that, if we choose ε small enough so that π(AC) ≤ 1/2, then∫
A

P (x, AC)π(dx)
π(A)π(AC)

≤ 2 εα−1 / (1 + α) .

Since α > 1, this converges to 0 as ε → 0+. Hence it can be made arbitrarily small, and

the result follows from Lemma 11.
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