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1. Introduction.

In the past several years there has been a lot of attention given to the Gibbs Sampler

algorithm for sampling from posterior distributions. This Markov chain Monte Carlo

algorithm, popularized by Geman and Geman [GG] and summarized in [GS], has its roots

in the Metropolis-Hastings algorithm ([MRRTT], [H]). It is closely related to the Data

Augmentation algorithm of Tanner and Wong [TW]. It exploits the simplicity of certain

conditional distributions to define a Markov chain that converges in law to the posterior

distribution under consideration. Once the Markov chain has converged, the values of

the Markov chain provide samples from the posterior. This facilitates sampling from

the posterior, even though it may be very difficult to compute directly. Thus, certain

computational problems normally associated with Bayesian inference can be overcome.

Gibbs sampling has recently been applied in non-Bayesian contexts as well; see [GT].

One obvious question is how long the Markov chain must be run “until it converges”.

In most actual implementations of Gibbs sampling, this question is answered heuristically,

as in “Let’s run it 1000 times” (see, e.g., [BYM], p. 6). This may be risky since Gibbs

sampling sometimes converges very slowly; see for example [M]. Now, it may be possible to

use convergence diagnostics to check if the distribution after (say) 1000 steps is indeed close

to the distribution to which the chain appears to converge; see [G], [Rob]. On the other

hand, see [GR] for warnings about possible problems. In any case, it would be comforting

to have theoretical results regarding how many iterations are required before the chain has

in fact converged.

There has been limited analysis of this question to date (though it can be expected

that there will be more in the future). In [SC] and [LWK], general theorems about the

functional form of the convergence are obtained, and it is shown that the convergence

will often be geometric. However, no quantitative results regarding the convergence rate

are given. (Perhaps this point should be stressed: It is one thing to say the variation

distance to the true posterior distribution after k steps will be less than Aαk for some

α < 1 and A > 0. It is quite another to give some idea of how much less than 1 this α

will be, and how large A is, or equivalently to give a quantitative estimate of how large k

should be to make the variation distance less than some ε.) In [SC] several simple models
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are analyzed exactly, facilitating convergence results for these cases. In [R1], quantitative

convergence rates are obtained for Data Augmentation for a two-step hierarchical model

involving Bernoulli random variables. Also, see [AKP] for an interesting analysis of a

related “discretization” algorithm.

In this paper we analyze the convergence rate of the variance component models as

described in [GS], Section 3.4, and defined herein in Section 3. (See also [BT] and [GHRS].)

Briefly, this model involves an overall location parameter µ, and K different parameters

θ1, . . . , θK which are normally distributed around µ. For each θi there are J different

observations Yi1, . . . , YiJ , normally distributed around θi. The point of view is that µ, the

θi, and the two variances involved are all unknown and are to be estimated. We focus our

attention on the case when K and J are both fairly large.

This is a model in which Gibbs sampling may be very useful. Thus, it would appear

to be particularly important to know how long to run the Gibbs sampler Markov chain

until it converges to the desired posterior distribution. Specifically, one can ask how many

iterations must be run until the variation distance between the law of the Markov chain

and the true posterior is appropriately small.

This paper provides the following answer (Theorem 1). If we consider a model with

K different location parameters, and with J observed data for each parameter, then the

variation distance in question after k iterations of the Gibbs sampler is less than

1.1 e−Bk/(1+ log K
log J )

plus a small correction term, provided K and J are not too small. Here B is a positive

number independent of J , K, and k, though it depends on the priors and on the nature

of the data being studied. To the extent that one is willing to ignore the correction term,

the result is in some sense sharp up to constants; see the remarks following the statement

of the theorem.

Theorem 1 therefore shows that the Gibbs sampler will converge relatively quickly for

the variance component models case, even for fairly large J and K. This is an encouraging

result, and runs contrary to the warning in [GS] (p. 401) that Gibbs sampling tends to

converge fairly slowly with many parameters. A partial explanation is that in variance
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component models as we shall study them, the K location parameters all act as a unit.

In particular, conditional on the values of the other three parameters, the K location

parameters are all conditionally independent. (We note that it may have been intended in

[GS] that these K different parameters were to be thought of as a single vector parameter,

so that their warning is not contradicted.) Thus, while the results herein are encouraging,

one should not expect similar results for models with more complicated interdependencies,

such as those arising in image processing.

The proof of Theorem 1 employs a coupling argument (Lemma 2) related to the notion

of Harris-recurrence (see [A], [AN], [AMN], [N]). This lemma is quite general, and reduces

the study of convergence rates for Markov chains to the question of how much “overlap”

there is between the multi-step transition probabilities starting from different points. The

lemma produces upper bounds on the variation distance between a Markov chain after k

steps and its stationary distribution.

This paper is organized as follows. In Section 2 we review the Gibbs sampler algorithm.

In Section 3 we define the variance component models we shall study, and discuss how

Gibbs sampling is applied to them. We also state our main theorem (Theorem 1). In

Section 4 we state and prove Lemma 2, the key lemma in the proof of Theorem 1. Finally,

in Section 5 we use Lemma 3 (a specialization of Lemma 2), together with some careful

computation, to prove Theorem 1. We close with an Appendix that discusses variation

distance and coupling.
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2. The Gibbs Sampler.

The Gibbs sampler algorithm was popularized by Geman and Geman [GG]. It is

related to the Data Augmentation algorithm of Tanner and Wong [TW]. A good review of

these and other related algorithms may be found in [GS].

Suppose we have random variables U1, U2, . . . , Un, and we wish to sample from their

joint distribution L(U1, . . . , Un). Suppose this joint distribution is complicated and there-

fore difficult to sample from. The Gibbs sampler algorithm proceeds as follows.

We first guess initial values U
(0)
1 , . . . , U

(0)
n for the random variables. (These may

themselves be chosen from some initial distribution.) We then update U1 conditional on

the initial values of the other variables:

U
(1)
1 ∼ L(U1 | U2 = U

(0)
2 , U3 = U

(0)
3 , . . . , Un = U (0)

n ) .

We continue in this way, updating each of the random variables conditional on the most

recent values of the others:

U
(1)
2 ∼ L(U2 | U1 = U

(1)
1 , U3 = U

(0)
3 , . . . , Un = U (0)

n )

......

U (1)
n ∼ L(Un | U1 = U

(1)
1 , U2 = U

(1)
2 , . . . , Un−1 = U

(1)
n−1) .

This completes one iteration of the Gibbs sampler; it requires n different updates. Contin-

uing in the same manner, we again update the variables U1, . . . , Un in order, conditional

on their most recent values, to obtain U
(2)
1 , . . . , U

(2)
n , and so on. After k iterations we have

generated the random variables U
(k)
1 , . . . , U

(k)
n . (In some implementations, the order in

which U1, . . . , Un are updated is not fixed; see [GG] and [GS]. But we do not consider that

here.)

This algorithm may be thought of as a Markov chain with xk = (U (k)
1 , . . . , U

(k)
n ). It

is easily seen that the probability distribution π(·) = L(U1, . . . , Un) is invariant for the

chain. Geman and Geman [GG] and Schervish and Carlin [SC] have proved that under
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certain (usually satisfied) positivity conditions (roughly, that conditional on the values of

Uj for j 6= i, anything is possible for Ui), this Markov chain will converge to its invariant

distribution π(·) as k →∞. Thus, for large values of k, L(U (k)
1 , . . . , U

(k)
n ) will be close to

π(·) = L(U1, . . . , Un), so that (U (k)
1 , . . . , U

(k)
n ) can be thought of as a sample from π(·).

An obvious and practical question to ask is, how large must k be so that L(U (k)
1 , . . . , U

(k)
n )

is indeed close to π(·)? There have been very few theoretical results about this question.

In this paper, we will get quantitative bounds on the variation distance

‖L(U (k)
1 , . . . , U (k)

n )− π(·)‖var

between these two distributions, in the particular case of variance component models (The-

orem 1). This will allow us to say how large k must be to make the variation distance less

than a given ε > 0.

3. Variance Component Models and Main Result.

We will follow the definition of variance component models given in [GS]. (See also

[BT] and [GHRS].) We suppose that there is some overall parameter µ, and that the

location parameters θ1, . . . , θK are independently normally distributed around µ:

θi ∼ N(µ, σ2
θ); (1 ≤ i ≤ K).

We further suppose that for each θi, there are J data points Yij independently normally

distributed around θi:

Yij ∼ N(θi, σ
2
e); (1 ≤ i ≤ K; 1 ≤ j ≤ J).

We suppose that the Yij are observed, but that σ2
θ , σ2

e , µ, and θ1, . . . , θK are to be estimated.

For example, θ1, . . . , θK might be K different extractions from a lake. For each ex-

traction i, Yi1, . . . , YiJ might be J different measurements of the concentration of a certain

pollutant. We wish to estimate the overall concentration of the pollutant µ, the concen-

tration θi in each extraction, and the variances σ2
θ between extractions and σ2

e between

measurements.
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The Bayesian approach to this problem involves putting priors on σ2
θ , σ2

e , and µ, and

then computing (or estimating) the posterior distribution on (σ2
θ , σ2

e , µ, θ1, . . . , θK). For

simplicity we stick to conjugate priors, so we set

σ2
θ ∼ IG(a1, b1); σ2

e ∼ IG(a2, b2); µ ∼ N(µ0, σ
2
0).

We take a1, b1, a2, b2, µ0, and σ2
0 as known constants. (Here N stands for the normal

distribution. Also IG stands for inverse gamma, and means that the reciprocal of the

random variable has a gamma distribution. IG(a, b) has density bae−b/x

Γ(a)xa+1 for x > 0, and

has mean b
a−1 and variance b2

(a−1)2(a−2) if a > 2.) This defines a probability model for

σ2
θ , σ2

e , µ, θ1, . . . , θK , Yij . The desired posterior distribution is then the law of

(σ2
θ , σ2

e , µ, θ1, . . . , θK)

conditional on the observed values of the Yij .

We note that it is possible to work with more general priors. While the computations

and arguments become somewhat more complicated, the basic ideas and the main results

appear to be similar. However, we do not consider that further here.

This posterior distribution is difficult to compute directly for large J and K, essen-

tially because there are no satisfactory algorithms for doing the necessary high-dimensional

numerical integration. Instead we shall consider using the Gibbs sampler algorithm to sam-

ple from the posterior. For the variance component models, this works as follows. The

state space is

X = {(σ2
θ , σ2

e , µ, θ1, . . . , θK) ∈ RK+3 | σ2
θ , σ2

e > 0} .

For each iteration, we update first σ2
θ , then σ2

e , then µ, and then θ1, . . . , θK , each conditional

on the most recent values of the other K + 2 variables. The conditional distributions of

these variables are easily computed [GS] to be

L(σ2
θ | µ, σ2

e , θ1, . . . , θK , Yij) = IG

(
a1 +

1
2
K, b1 +

1
2

∑
i

(θi − µ)2
)

;

L(σ2
e | µ, σ2

θ , θ1, . . . , θK , Yij) = IG

a2 +
1
2
KJ, b2 +

1
2

∑
i,j

(Yij − θi)2

 ;
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L(µ | σ2
θ , σ2

e , θ1, . . . , θK , Yij) = N

σ2
θµ0 + σ2

0

∑
i

θi

σ2
θ + Kσ2

0

,
σ2

θσ2
0

σ2
θ + Kσ2

0

 ;

L(θi | µ, σ2
θ , σ2

e , θ1, . . . , θi−1, θi+1, . . . , θK , Yij) = N

(
Jσ2

θY i + σ2
eµ

Jσ2
θ + σ2

e

,
σ2

θσ2
e

Jσ2
θ + σ2

e

)
(1 ≤ i ≤ K) .

(Here Y i = 1
J

J∑
j=1

Yij .) Thus, the Gibbs sampler algorithm involves guessing

(σ2
θ
(0), σ2

e
(0), µ(0), θ

(0)
1 , . . . , θ

(0)
K ), and then generating from these conditional distributions,

in turn,

σ2
θ
(1), σ2

e
(1), µ(1), θ

(1)
1 , . . . , θ

(1)
K , σ2

θ
(2), σ2

e
(2), . . . , σ2

θ
(k), σ2

e
(k), µ(k), θ

(k)
1 , . . . , θ

(k)
K .

This completes k iterations of the Gibbs sampler.

Write x(k) for (σ2
θ
(k), σ2

e
(k), µ(k), θ

(k)
1 , . . . , θ

(k)
K ), and write π(·) for the true posterior

distribution L(σ2
θ , σ2

e , µ, θ1, . . . , θK). We are interested in the total variation distance

‖L(x(k))− π(·)‖var .

In particular, we wish to know how large k should be, as a function of J and K, to make

this variation distance small. This question is answered by the following theorem. To state

it, recall that Y i = 1
J

∑
j

Yij and set

Y =
1

KJ

∑
i,j

Yij =
1
K

∑
i

Y i;

v1 =
1

KJ

∑
i,j

(Yij − Y i)2;

v2 =
1
K

∑
i

(Y i − Y )2;

Theorem 1. For the Gibbs sampler algorithm defined above, with a starting distribution

concentrated within the subset R∗ defined below, there are positive numbers J0, B, B′,

A1, A2, and A3, depending only on v1, v2, and the priors, but otherwise independent of

J,K, k, and the data Yij , such that for J ≥ J0,

(a)

‖L(x(k))− π(·)‖var ≤ 1.1 e−Bk/(1+ log K
log J ) + kA1e

−A2K .
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(b)

‖L(x(k))− π(·)‖var ≤ A3 e−B′√k/((K/J) log k+K6/J2) .

Remarks.

1. The main thrust of this theorem is providing quantitative bounds on the total variation

distance (see Appendix) to the stationary distribution after running the Gibbs sampler

for k iterations. It thus provides estimates of how long the Gibbs sampler should be

run before samples from the Gibbs sampler can be regarded as good approximations

to samples from the true posterior.

2. Even for this particular variance components model, there are many factors which

affect the rate of convergence, including the number of parameters K, the amount of

data per parameter J , the “spread” of the data as measured by v1 and v2, and the

prior distributions as specified by a1, b1, a2, b2, µ0, and σ2
0 . (Note that from a Bayesian

perspective the data and prior are fixed throughout, so none of these quantities is

a random variable.) Although the results of this paper in principle give rates of

convergence in terms of all of these quantities, we have chosen to emphasize how the

rate depends specifically on the values of K and J , with all of the other quantities

held fixed. We have further concentrated particularly on the case in which K and

J are both relatively large. If a different dependence is to be emphasized, the same

general arguments would apply, but it might be necessary to re-interpret the results

somewhat. In particular, in the case of small K and J , it may be necessary to modify

the choices of R∗, etc., in the details of the proof.

3. To the extent that one is willing to ignore terms of the form ke−(const)K (which are

very small if K is large and k is moderate), part (a) of the theorem gives a very

pleasing answer. It states that O(1 + log K
log J ) iterations are required (provided J is

not too small) to make the variation distance small. (In other words, if k is large

compared to 1 + log K
log J , then the variation distance is small.) In particular, if log K

log J

remains fixed, the number of iterations required does not grow with J and K. This

may be somewhat surprising, since as J increases the posterior becomes more peaked,

and as K increases the posterior becomes more complicated.
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4. The quantity O(1 + log K
log J ) of the previous remark is in some sense the best possible.

Specifically, it is seen (see the remark on lower bounds at the end of the paper) that

if k is very small compared to 1 + log K
log J , then the Gibbs sampler cannot possibly have

converged. Thus, to the extent that one ignores the ke−(const)K term, the quantity

O(1 + log K
log J ) is “correct”, so that the result of part (a) is “sharp up to constants”.

5. Despite the previous remarks, the fact remains that the second term in the bound

in part (a) of the theorem, of the form ke−(const)K , is not going to 0 as a function

of k (in fact it’s going to infinity!). This unfortunate situation arises because of the

difficulty in controlling the (rare) occurrences when the Gibbs sampler escapes from

the set R∗ defined below. The problem is remedied in part (b) of the theorem, which

is proved by the unusual method of allowing the set R to grow as a function of k!

The bound in part (b) ensures that the variation distance does indeed go to 0 as a

function of k. As a penalty, however, part (b) gives too slow a rate of convergence; if

K ≥ J , we need k to be large compared to (K6/J2)2 for the variation distance to be

small. We take the point of view that part (a) of Theorem 1 shows that the variation

distance gets fairly small when k is of order 1 + log K
log J , while part (b) shows that for

even larger k the variation distance does indeed go to 0. (Furthermore, the bound in

part (b) goes to 0 at a super-polynomial but sub-exponential rate. Thus, it does not

quite establish that this Gibbs sampler is geometrically ergodic.)

6. While the theorem’s aim is to provide quantitative bounds on the time to convergence

of this Gibbs sampler, it is still stated in terms of the unspecified numbers B, B′,

A1, A2, and A3. However, the proof of the theorem (Section 5) does explain (in a

necessarily complicated and multi-step way) how these numbers are computed, and

we have tried to indicate this as explicitly as possible. Thus, a researcher with a

given data set could compute values for these numbers, and use Theorem 1 to obtain

precise upper bounds for how many iterations of the Gibbs sampler will be required.

A general formula for these numbers could be given, but unfortunately it would be

very awkward and also not optimal, especially for small data sets. We are presently

working on getting sharper values of the numbers in these cases.

7. The theorem requires that we use an appropriate starting distribution. Specifically,
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the starting distribution should be supported entirely in the set R∗ defined in Section

5. However, for reasonably large J (which is our emphasis) this is a very large set,

so this requirement is not very severe. (For small values of J , however, the set R∗

could even be empty, hence our requirement that J ≥ J0. For such small J , the

proof could be modified to produce a bound using an alternative, non-empty set

R∗. Indeed, any bounded subset R∗ could in principle be used, though of course the

quantitative bounds would be affected.) We note that our Theorem applies for any

starting distribution supported in R∗, including a point mass.

The main lemma used to prove Theorem 1 is stated in Section 4, and Theorem 1 is

then proved in Section 5.

4. The Main Lemma.

It is difficult to approach the proof of Theorem 1 directly. This is because both the law

of x(k) (the Gibbs sampler after k iterations) and the true posterior distribution are difficult

to compute, and so the variation distance between them is also difficult to compute.

Our approach instead will be to use the following lemma. It gives a bound on the

variation distance of a Markov chain to its stationary distribution in terms of the amount

of “overlap” of the transition probabilities starting from different places. The lemma is

closely related to the notion of Harris-recurrence; see [A], [AN], [AMN], and [N]. A special

case of this lemma was described in [R1]. We wish to emphasize that the lemma is valid

for any Markov chain, and may be useful in situations quite different from Gibbs sampling.

We need the following notation. If Q1(·) and Q2(·) are probability measures, and

ε > 0, then we will write Q1(·) ≥ ε Q2(·) to mean that Q1(A) ≥ ε Q2(A) for all measurable

sets A. If Q1(·) and Q2(·) have densities q1(x) and q2(x) with respect to Lebesgue measure,

then this is equivalent to saying that q1(x) ≥ ε q2(x) for almost all x.

Lemma 2. Let P (x, ·) be the transition probabilities for a time-homogeneous Markov

chain on a state space X . Suppose that for some measurable subset R ⊆ X , some proba-

bility distribution Q( · ) on X , some positive integer k0, and some ε > 0,

P k0(x, ·) ≥ εQ( · ) for all x ∈ R ,
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where P k0 represents the k0-step transition probabilities. Let π(·) be any stationary dis-

tribution for the Markov chain on X . Then for any initial distribution π0(·) supported

entirely in R, the distribution πk(·) of the Markov chain after k steps satisfies

‖πk(·)− π(·)‖var ≤ (1− ε)bk/k0c + a + 2bk/k0cb ,

where ‖ · ‖var is total variation distance, brc is the greatest integer not exceeding r,

a = π(RC) = 1− π(R), and

b = sup
x∈R

P k0(x,RC) = 1− inf
x∈R

P k0(x, R) .

Proof. The proof shall be by a coupling argument. (For background on coupling, see

the Appendix.) We first note that, replacing P (x, ·) by P k0(x, ·) if necessary, and using

the fact that the variation distance to a stationary distribution is (weakly) monotonically

decreasing, it suffices to consider the case k0 = 1.

We let {Xt} begin in the distribution π0, and let {Yt} begin in the distribution π. We

let them progress as follows. Given the values Xm and Ym, where 0 ≤ m ≤ k, we choose

Xm+1 and Ym+1 by

(i) if Xm ∈ R and Ym ∈ R, then flip a coin with probability of heads equal to ε.

Then

(a) if it’s heads, choose x ∈ X according to Q(·), and set Xm+1 = Ym+1 = x;

(b) if it’s tails, choose Xm+1 and Ym+1 independently according to the distri-

butions 1
1−ε (P (Xm, · )− εQ(·)), and 1

1−ε (P (Ym, · )− εQ(·)), respec-

tively.

(ii) if Xm 6∈ R or Ym 6∈ R, then simply choose Xm+1 and Ym+1 independently

according to the distributions P (Xm, · ) and P (Ym, · ) respectively.

This defines a prescription for choosing Xm and Ym for 0 ≤ m ≤ k. It is easily checked

that these values are chosen with probabilities consistent with the transition probabilities

P (x, ·).

Let T be the first time we choose option (i) (a) above (with T = ∞ if we never choose

option (i) (a)). Let Zm be equal to Ym for m ≤ T , and to Xm for m > T . Then (Xm, Zm)

is easily seen to be a coupling with coupling time T .
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The coupling inequality (see Appendix) then gives that

‖L(Xk)− L(Yk)‖var = ‖πk(·)− π(·)‖var ≤ Prob(T > k) .

We now observe that conditional on Xm and Ym remaining in R, the coupling time T will

be a geometric random variable with parameter ε. Thus

Prob(T > k) ≤ Prob(Xm 6∈ R or Ym 6∈ R for some 0 ≤ m ≤ k)

+ Prob(Xm ∈ R and Ym ∈ R for all 0 ≤ m ≤ k, and T > k)

≤ Prob(X0 6∈ R) + Prob(Y0 6∈ R)

+
k∑

m=1

(Prob(Xm 6∈ R | Xm−1 ∈ R) + Prob(Ym 6∈ R | Ym−1 ∈ R))

+ Prob(Xm ∈ R and Ym ∈ R for all 0 ≤ m ≤ k, and T > k)

≤ 0 + a +
( k∑

m=1

(2b)
)

+ (1− ε)bk/k0c

= a + 2kb + (1− ε)k .

Remarks.

1. The conclusion of the lemma is unsatisfying in that the upper bound given does not

approach 0 as k →∞. One can remedy this by letting the set R get larger and larger

(so that a and b get smaller and smaller) as a function of k. This idea is used in the

proof of Theorem 1 (b).

2. It is easily seen that we can bound the quantity b above by k0b1, where b1 = sup
x∈R

P (x,RC)

is the one-step analog of the k0-step b. This shows that

‖πk(·)− π(·)‖var ≤ (1− ε)bk/k0c + a + 2kb1 ,

which may be easier to apply in some cases.

3. It is not necessary that the Markov chain under consideration be time-homogeneous; it

is easily seen that the proof still goes through, even with the simplification of Remark
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2, as long as P t,t+k0(x, ·) > εQ(·) for all x ∈ R and for all times t, provided we

re-define b and b1 as

b = sup
t

sup
x∈R

P t,t+k0(x,RC) ; b1 = sup
t

sup
x∈R

P t,t+1(x, RC) .

4. Lemma 2 is similar in appearance to the Strong Stopping Times of Aldous and Di-

aconis (see [D], Chapter 4A). However, in Lemma 2 the probability measure Q(·) is

arbitrary, while in the case of Strong Stopping Times Q(·) is required to be a station-

ary distribution for the chain. This difference is significant since in many cases the

stationary distribution is unknown or difficult to work with. Also, the conclusion is

slightly weaker: With Strong Stopping Times one can bound the separation distance

to stationarity, while with Lemma 2 it is easy to construct counter-examples to show

that only the variation distance is so bounded.

We shall actually require Lemma 2 in a slightly more specialized form. For clarity we

record it here.

Lemma 3. Let X , P (·, ·), and π(·) be as in Lemma 2. Suppose there are measurable

subsets R1, R2 ⊆ X , some probability distribution Q( · ) on X , some positive integer k0,

and some ε1, ε2 > 0, such that

P k0(x, R2) ≥ ε1 for all x ∈ R1 ,

and

P (x, ·) ≥ ε2 Q( · ) for all x ∈ R2 .

Then for any initial distribution π0(·) supported entirely in R1, the distribution πk(·) of

the Markov chain after k steps satisfies

‖πk(·)− π(·)‖var ≤ (1− ε1ε2)bk/(k0+1)c + a + 2bk/(k0 + 1)cb ,

where a = π(RC
1 ) = 1− π(R1), and

b = sup
x∈R1

P k0+1(x,RC
1 ) = 1− inf

x∈R1
P k0+1(x,R1) .
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Proof. This follows immediately from Lemma 2, since the hypotheses imply that

P k0+1(x, ·) ≥ ε1ε2 Q( · ) for all x ∈ R1 .

Remarks.

1. It is useful to think of the set R2 above as being very small, so that the transition

probabilities from R2 are all pretty much the same (so ε2 is reasonably large). Thus,

it is most difficult to show that the Markov chain will jump from R1 to R2 after k0

steps with probability ≥ ε1.

2. As in Remark 2 following Lemma 2 above, we can simplify Lemma 3 to state that

‖πk(·)− π(·)‖var ≤ (1− ε1ε2)bk/(k0+1)c + a + 2kb1 ,

where b1 = sup
x∈R

P (x, RC). We shall use this in Section 5 in the proof of Theorem 1

(a).

5. The Proof of Theorem 1.

In this section we prove Theorem 1, making use of Lemma 3. Our plan will be as

follows. We shall choose an appropriate “small” set R2 and “large” set R1 such that

beginning in the set R1, with large probability (i.e. with probability bounded below

independently of J and K) the Markov chain will get to the set R2 after some k0 steps,

and such that the transition probabilities from R2 have large overlap (i.e. overlap bounded

below independently of J and K). Here k0 will be O(1 + log K
log J ). We will then use Lemma

3 with ε1, ε2 chosen independent of J and K, to conclude that the Markov chain converges

in O(k0/ε1ε2) = O(1 + log K
log J ) steps.

We now proceed to make this more precise. Recall the definitions of Y , v1, and v2

from Section 3. We let R2 be the subset of X where µ and θ1, . . . , θK satisfy∣∣∣∣
(

1
K

∑
i

(θi − µ)2
)
−
(

v2 − (
1

J − 1
)v1

) ∣∣∣∣ ≤ 1/
√

K ,

∣∣∣∣
 1

JK

∑
ij

(θi − Yij)2

−
(

(
J

J − 1
)v1

) ∣∣∣∣ ≤ 1/
√

JK ,

15



and
∣∣( 1

K

∑
i

θi

)
− Y

∣∣ ≤ 1/
√

K .

Note that R2 will be non-empty for sufficiently large values of J . The following lemma

states that the transition probabilities from R2 have large overlap.

Lemma 4. There is a probability measure Q(·) on X , and an ε2 > 0 independent of J

and K (though it may depend on v1, v2, and the priors), such that

P (x, ·) ≥ ε2Q(·) for all x ∈ R2 .

Proof. We define Q(·) to be the measure which chooses σ2
θ , σ2

e , µ, θ1, . . . , θK as follows.

Choose σ2
θ , σ2

e , and µ independently, with σ2
θ uniform on the set Iσ2

θ
= [v2 − ( 1

J−1 )v1 −
1√
K

, v2 − ( 1
J−1 )v1 + 1√

K
], σ2

e uniform on the set Iσ2
e

= [( J
J−1 )v1 − 1√

JK
, ( J

J−1 )v1 + 1√
JK

],

and µ uniform on the set Iµ = [Y − 1√
K

, Y + 1√
K

]. Then choose the θi according to their

“correct” conditional distributions, i.e. chosen independently from the normal distribution

N

(
Jσ2

θY i + σ2
eµ

Jσ2
θ + σ2

e

,
σ2

θσ2
e

Jσ2
θ + σ2

e

)
.

Thus, Q(·) picks σ2
θ , σ2

e , and µ independently but then picks θ1, . . . , θK in a dependent

fashion.

Now, if (σ2
θ
(k), σ2

e
(k), µ(k), θ

(k)
1 , . . . , θ

(k)
K ) ∈ R2, then the Markov chain will proceed as

follows. First σ2
θ
(k+1) will be chosen from the inverse gamma distribution

L(σ2
θ
(k+1) | x(k)) = IG

(
a1 +

1
2
K, b1 +

1
2

∑
i

(θ(k)
i − µ(k))2

)
.

(Recall that x(k) stands for (σ2
θ
(k), σ2

e
(k), µ(k), θ

(k)
1 , . . . , θ

(k)
K ).) Now, recalling that the dis-

tribution IG(a, b) has mean b
a−1 and variance b2

(a−1)2(a−2) , and that 1
K

∑
i

(θ(k)
i − µ(k))2 is

within 1/
√

K of v2 −
(

1
J−1

)
v1, we see that L(σ2

θ
(k+1) | x(k)) has mean within O(1/

√
K)

of v2 −
(

1
J−1

)
v1, and variance which is O(1/K). Thus, the standard deviation will be

O(1/
√

K). Now, it is easily seen that such an inverse gamma distribution will have large

overlap with the uniform distribution on the set Iσ2
θ
. Specifically, write IG(a, b;x) for the

density function of the distribution IG(a, b), and set

εσ2
θ

= min
{

(
√

K/2)−1 IG

(
a1 +

1
2
K, b1 +

1
2
Kt; x

) ∣∣∣
16



x ∈ Iσ2
θ
, |t− (v2 −

(
1

J − 1

)
v1)| ≤

1√
K

}
.

Then εσ2
θ

is easily seen to be bounded below independently of J and K. (Indeed, this just

amounts to saying that the IG distribution with variance O(K) has density uniformly of

O(
√

K) everywhere within O(
√

K) of its mean.) Also, by construction, if x(k) ∈ R2, then

L(σ2
θ
(k+1) | x(k)) ≥ εσ2

θ
UI

σ2
θ

as measures (where US stands for the uniform distribution on the set S).

Second, σ2
e
(k+1) will be chosen from the inverse gamma distribution

L(σ2
e
(k+1) | x(k)) = IG

a2 +
1
2
KJ, b2 +

1
2

∑
ij

(Yij − θ
(k)
i )2

 ,

with mean within O(1/
√

JK) of ( J
J−1 )v1, and with standard deviation which is O(1/

√
JK).

By a virtually identical argument to the above, there is εσ2
e

> 0 bounded below indepen-

dently of J and K such that if x(k) ∈ R2, then

L(σ2
e
(k+1) | x(k)) ≥ εσ2

e
UI

σ2
e

.

Specifically, we set

εσ2
e

= min
{

(
√

JK/2)−1 IG

(
a2 +

1
2
KJ, b2 +

1
2
KJt; x

) ∣∣∣
x ∈ Iσ2

e
, |t−

(
J

J − 1

)
v2| ≤

1√
JK

}
,

similar to the above.

Third, µ(k+1) will be chosen from the normal distribution

L(µ(k+1) | σ2
θ
(k+1)

, θ
(k)
i ) = N

(
σ2

θ
(k+1)µ0 + σ2

0

∑
i θ

(k)
i

σ2
θ
(k+1) + Kσ2

0

,
σ2

θ
(k+1)σ2

0

σ2
θ
(k+1) + Kσ2

0

)
.

Write N(a, b;x) for the density function of the normal distribution, and set

εµ = min
{

(
√

K/2)−1 N

(
sµ0 + σ2

0Kt

s + Kσ2
0

,
sσ2

0

s + Kσ2
0

; x

) ∣∣∣ x ∈ Iµ, s ∈ Iσ2
θ
, |t− Y | ≤ 1/

√
K

}
.

17



Then it is easily checked that εµ is bounded below independently of J and K, and that

conditional on σ2
θ
(k+1) ∈ Iσ2

θ
and x(k) ∈ R2, we will have

L(µ(k+1)|σ2
θ
(k+1)

, θ
(k)
i ) ≥ εµ UIµ

.

Finally, θ
(k+1)
1 , . . . , θ

(k+1)
K will be chosen precisely from the distribution

L(θ(k+1)
i | σ2

θ
(k+1), σ2

e
(k+1), µ(k+1))

= N

(
Jσ2

θ
(k+1)Y i + σ2

e
(k+1)µ(k+1)

Jσ2
θ
(k+1) + σ2

e
(k+1)

,
σ2

θ
(k+1)σ2

e
(k+1)

Jσ2
θ
(k+1) + σ2

e
(k+1)

)
,

which is precisely the same as under Q(·).

Combining all of this information, we conclude that if x(k) ∈ R2, then

L(x(k+1) |x(k)) ≥ εσ2
θ
εσ2

e
εµ Q(·), as measures. Furthermore, while εσ2

θ
εσ2

e
εµ may depend on

J and K, it is bounded below by (say) ε2 > 0 independent of J and K. This completes

the proof.

We wish to use this R2 and Q(·) as in Lemma 3. We shall show that with uniform

probability (i.e. with probability bounded below independently of J and K), the Markov

chain will get from any starting point in some large set R1 to the set R2, and that this will

happen in some k0 steps, where k0 will be O(1 + log K
log J ). This will allow us to use Lemma

3 to conclude (once we obtain bounds on a and b) that the Markov chain will converge in

O(k0) = O(1 + log K
log J ) steps.

The argument is trickiest when K >> J . In this case, there are problems if σ2
θ gets

“stuck” too close to 0. It is worthwhile to keep this case in mind to fully appreciate the

difficulties involved.

We begin by letting R∗ be the subset of X on which 1
K

∑
i

(θi−µ)2 ≥ (v2−
(

1
J−1

)
v1)/10,

1
JK

∑
ij

(Yij − θi)2 ≤ 10(v1 + v2), and
∣∣∣ ( 1

K

∑
i

θi

)
− Y

∣∣∣ ≤ 10.

Lemma 5. There are ε∗, J0, c∗ > 0, all independent of J and K, such that assuming

J ≥ J0, there is k∗ ≤ c∗(1 + log K
log J ), such that if (σ2

θ
(0), σ2

e
(0), µ(0), θ

(0)
1 , . . . , θ

(0)
K ) ∈ R∗, then

with probability ≥ ε∗, we will have (σ2
θ
(k∗), σ2

e
(k∗), µ(k∗), θ

(k∗)
1 , . . . , θ

(k∗)
K ) ∈ R2.
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Proof. The Markov chain can be analyzed as follows. We use the notation r = 1
K

∑
i

(θi−

µ)2; s = 1
JK

∑
i

(Yij − θi)2; and t = 1
K

∑
i

θi. The set R2 then corresponds to the set

|r − (v2 −
(

1
J−1

)
v1)| ≤ 1/

√
K, |s−

(
J

J−1

)
v1)| ≤ 1/

√
JK, and |t− Y | ≤ 1/

√
K.

We use the following facts. (1) If X is a random variable with mean m and variance v,

then the expected value E(X2) = m2+v; (2) If L(X) = N(a, b), then L(X−`) = N(a−`, b);

and (3) 1
n

n∑
i=1

(αi −β)2 = (β−α)2 + 1
n

n∑
i=1

(αi −α)2. Using these facts, it is straightforward

to show that

E(r(k+1) | r(k), s(k), t(k)) =
(

Jr(k)

Jr(k) + s(k)

)2

(v2 + (Y − t(k))2) +
(

r(k)s(k)

Jr(k) + s(k)

)
+ O(1/

√
K) ;

E(s(k+1) | r(k), s(k), t(k)) = v1 +
(

s(k)

Jr(k) + s(k)

)2

(v2 + (Y − t(k))2)

+
(

r(k)s(k)

Jr(k) + s(k)

)
+ O(1/

√
JK) ; (∗)

E(t(k+1) | r(k), s(k), t(k)) =
Jr(k)Y + s(k)t(k)

Jr(k) + s(k)
+ O(1/

√
K) .

(For example, for r(k+1), we proceed as follows. Given x(k), we see that σ2
θ
(k+1) will have

mean within O(1/K) of r(k) and variance O(1/K), that σ2
e
(k+1) will have mean within

O(1/K) of s(k) and variance O(1/JK), and that µ(k+1) will have mean within O(1/K) of

t(k) and variance O(1/K). Thus, (θ(k+1)
i − µ(k+1)) will be a random variable with mean

within O(1/
√

K) of Jr(k)

Jr(k)+s(k) (Y i − t(k)), and with variance r(k)s(k)

Jr(k)+s(k) + O(1/K). Hence,

E(r(k+1) | x(k)) =
1
K

∑
i

(
Jr(k)

Jr(k) + s(k)
(Y i − t(k))

)2

+
r(k)s(k)

Jr(k) + s(k)
+ O(1/

√
K) .

The result for r(k) now follows from noting that

∑
i

(Y i − t(k))2 = (Y − t(k))2 +
∑

i

(Y i − Y )2 = (Y − t(k))2 + v2 .)

Furthermore, it is easily checked that

Var(r(k+1) | r(k), s(k), t(k)) = O(1/K) ;
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Var(s(k+1) | r(k), s(k), t(k)) = O(1/JK) ;

Var(t(k+1) | r(k), s(k), t(k)) = O(1/K) .

We conclude that with high probability r(k+1), s(k+1), and t(k+1) will be close to their

expected values as given above.

Now, it follows from this that after one iteration, for appropriate C1 independent of J

and K, with uniform probability we will have r(1), s(1), t(1) in the compact set R∗∗ defined

by
(
v1 − ( 1

J−1 )v2)
)

/10 ≤ r ≤ C1

(
v1 − ( 1

J−1 )v2)
)
, 0 ≤ s ≤ 10(v1 + v2), and in addition

|t− Y | ≤ C1/J .

Once this is true, the let us again consider equations (∗), but let us omit the O(1/
√

K)

and O(1/
√

JK) error terms. Equations (∗) then define a dynamical system in the

variables r, s, and t. This dynamical system is seen (by directly checking) to have a fixed

point

r(k) = r∗ ≡ v2 −
(

1
J − 1

)
v1 ;

s(k) = s∗ ≡
(

J

J − 1

)
v1 ;

t(k) = t∗ ≡ Y .

Furthermore, we see by direct computation (recalling that |t(k) − Y | ≤ C1/J) that all

partial derivatives of the form ∂u(k+1)

∂v(k) , where u, v ∈ {r, s, t}, will be O(1/J) uniformly in

the set R∗∗. This means that the fixed point (r∗, s∗, t∗) will have rate of attraction which is

O(1/J) inside R∗∗. Thus, there is C2 > 0 independent of J and K, such that the distance

from (r(k), s(k), t(k)) to (r∗, s∗, t∗) will be multiplied by a factor ≤ C2/J on each iteration

of the dynamical system. Hence, for J > C2, after log(1/
√

K)
log(C2/J) =

1
2 log K

log J − log C2
iterations, the

dynamical system will be within 1/
√

K of its fixed point.

Now, the Markov chain itself does not follow a deterministic procedure. However, it

“nearly” does, in the following sense. If we set C3 = 2C2, then with very high probability

the values r(k), s(k), t(k) will get closer to their fixed point by a factor ≤ C3/J . Hence,

provided J ≥ J0 ≡ 2C3 (say), the values of (r(k), s(k), t(k)) will with high probability get

geometrically closer and closer to (r∗, s∗, t∗). This will continue until the values get to

within O(1/
√

K) of this fixed point. But from that close, there is uniform probability that
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the Markov chain will jump into the set R2 in a single step. Furthermore, the probabilities

that (r(k), s(k), t(k)) will fail to get geometrically closer to (r∗, s∗, t∗) are summable and

uniformly bounded above by something less than 1. Thus, there is uniform probability that

(r(k), s(k), t(k)) will proceed geometrically to the set R2. (A similar argument is presented

in greater detail as Lemma 4 of [R1].) We conclude that if we set k∗ = d
1
2 log K

log J − log C3
e+ 2,

and set

ε′ = min{P k∗(x, R2) | x ∈ R1} ,

then ε′ can be bounded below independently of J and K. The lemma follows.

Remark. If J ≥ O(K), then the proof of Lemma 5 can be simplified greatly. Indeed,

in that case it suffices to take k∗ = 2, and it is not necessary to consider the iterative

argument at all.

We are now in a position to prove Theorem 1, using Lemma 3. We shall make use of

some technical lemmas (Lemmas 6, 7, and 8), whose statements and proofs we defer until

the end.

For Theorem 1 (a), we use Lemma 3 with R1 = R∗, k0 = k∗, and ε1 = ε∗ (and with

R2, ε2, and Q(·) as in Lemma 5). Lemma 6 below shows that π(RC
∗ ) and sup

x∈R∗

P (x, RC
∗ )

are both bounded by expressions of the form c1e
−c2 k. Theorem 1 (a) then follows directly

from Lemmas 3 (with Remark 2 following it), 4, 5, and 6, and a little bit of re-arranging,

with B = − log(1− ε1ε2), A1 = 2c1 + 1, and A2 = c2. The factor of 1.1 is included simply

to avoid reference to the greatest integers less than certain values; the extra 0.1 leeway,

together with appropriate choices of the constants, takes care of this.

For Theorem 1 (b), we fix a number of iterations k, and let R1 be the subset of X on

which |Y −
∑
i

θi| ≤ k1/4. (Note that we are letting the set R1 depend on the total number

of iterations; see the first remark after Lemma 2 above.) Lemma 7 below then states that

if x(0) ∈ R1, then with probability ≥ δ1 > 0 independent of J , K, and k, we will have

x(k1) ∈ R∗, where k1 is O(K3
√

k log k). Combining this with Lemma 5, we conclude that

with probability ≥ ε∗δ1, we will have x(k0) ∈ R2, where k0 = k1+k∗. Lemma 8 below states
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that π(RC
1 ) and sup

x∈R1

P k0+1(x,RC
1 ) are both bounded by expressions of the form c3e

−c4
√

k

for c3, c4 independent of J , K, and k. Using all of this information, Theorem 1 (b) now

follows from Lemma 3, with ε2, Q(·), and R2 as in Lemma 4, with k0 = k1 + k∗, with R1

as above, with ε1 = δ1ε∗, and with B′ = min(c4,− log(1− ε1ε2)) and A3 = 2.1 + 2c3.

We now proceed to the missing lemmas.

Lemma 6. Let π(·) be the true posterior distribution for the variance component model.

Let P (·, ·) be the transition probabilities for the Gibbs sampler. Let R∗ be as above, and

let

a = π(RC
∗ ); b = max

x∈R∗
P (x, RC

∗ ) .

Then there are J0, c1, c2 > 0 independent of J and K, such that a ≤ c1e
−c2K and b ≤

c1e
−c2K provided J ≥ J0.

Proof. We examine b first. We again recall equations (∗) from the proof of Lemma 5.

Those equations imply that

E(r(k+1) | x(k)) ≥
(

Jr(k)

Jr(k) + s(k)

)2

v2 .

Hence, if x(k) ∈ R∗, then we will have

E(r(k+1) | x(k)) ≥
(

J(v2/10)
J(v2/10) + 10(v1 + v2)

)2

v2 .

For sufficiently large J , this expression will be greater than v2/5 (say), which is “safely

inside R∗”. Furthermore, the variance of r(k+1) given x(k) will be O(1/K). In addition,

all the possible choices for the random variables involved (i.e. σ2
θ , σ2

e , µ,
∑

θi,
∑

(θi − µ)2,

and
∑

(θi−Yij)2) are made from distributions which fall off at least as fast as e−(const)Ky

or y−(const)K away from their modes. We conclude that Prob(r(k+1) < v2/10 | x(k)) ≤

(const)e−(const)K for x(k) ∈ R∗. (Of course, here “const” may depend on v1, v2, and the

priors, but it is independent of J and K.)

In an entirely similar manner, we conclude that Prob(s(k+1) > 10(v1 + v2) | x(k)) ≤

(const)e−(const)K , and that Prob(|t(k+1) − Y | > 10 | x(k)) ≤ (const)e−(const)K , for suffi-

ciently large J . The conclusion about b follows.
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To understand a, we take a direct approach. Recall that π(·) is the posterior distri-

bution for the model in question. Thus, the density for π(·) is proportional to

L(Yij , σ
2
θ , σ2

e , µ, θ1, . . . , θK) = IG(a1, b1;σ2
θ) × IG(a1, b2;σ2

e) × N(µ0, σ
2
0 ;µ) ×

×
K∏

i=1

N(µ, σ2
θ ; θi)

J∏
j=1

N(θi, σ
2
e ;Yij)

 .

For fixed Yij , this density is easily seen to be largest when µ is within O(1/
√

K) of Y , θi

is within O(1/
√

J) of Y i, σ2
θ is within O(1/

√
K) of v2, and σ2

e is within O(1/
√

JK) of v1.

Furthermore, it is easily seen to fall off at least as fast as (const)e−(const)Ky or y−(const)K

away from this mode. The conclusion about a now follows from straightforward bounding,

and amounts to observing that the ratio of the density for π(·) near its mode and far from

its mode (in R∗) is sufficiently small.

Lemma 7. Let k be a positive integer, and let R1 be the subset of X defined by

|Y −
∑
i

θi| ≤ k1/4. Then there are J0, c, δ1 > 0 independent of J , K, and k, such that

inf
x∈R1

P (x(k1) ∈ R1 | x(0) = x) ≥ δ1 ,

for some k1 ≤ c
√

k
(
(K/J) log k + K6/J2

)
, provided J ≥ J0.

Proof. The idea of the proof is that |Y −
∑
i

θi| may be very large at the beginning, but

for “reasonable” values of σ2
θ and σ2

e , it will tend to get smaller by a factor O(1/J) at each

iteration, so that the Markov chain will approach R∗ rather rapidly. The only problem is

that if σ2
θ is “stuck” at a very small value, then special care must be taken. (We repeat

again that this is only an issue if K >> J ; if not, then σ2
θ returns to “reasonable” values

at most iterations.)

Set t(n) =
∑
i

θ
(n)
i as before, and assume that x(0) ∈ R1. We proceed as follows. On the

first iteration, with uniform probability we will have µ(1) close to t(0), and |Y −t(1)| ≤ k1/4.

After that, referring to equations (∗) from the proof of Lemma 5, we see directly that with

uniform probability s(2) will be ≤ (const)
√

k, and |Y − µ(2)| will be ≤ (const)k1/4. (Here
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“const” means independent of J , K, and k.) If σ2
θ
(2) were bounded away from 0, then

it would be clear that t(n) would rapidly approach Y . To handle the general case, we

observe that the mean of σ2
θ at each iteration will be at least b1

a1+
1
2 K

. Thus, with uniform

probability we will have σ2
θ ≥ (const)/K in at least half (say) of the iterations.

Now, recall that the mean of θi at each iteration is Jσ2
θY i+σ2

eµ

Jσ2
θ
+σ2

e
. Hence, the mean

of
∑
i

θi at each iteration is Jσ2
θY +σ2

eµ

Jσ2
θ
+σ2

e
. Hence, |Y −

∑
i

θi| is roughly ( σ2
e

Jσ2
θ
+σ2

e
)|µ − Y | =

( 1
1+Jσ2

θ
/σ2

e
)|µ− Y |. Recalling that µ has mean within O(1/K) of 1

K

∑
i

θi, we see that, up

to O(1/K), with uniform probability |Y −
∑

θi| gets multiplied by about 1
1+Jσ2

θ
/σ2

e
at each

iteration. If σ2
θ ≥ (const)/K, and σ2

e ≤ (const)
√

k, then this factor is ≤ 1
1+(const)J/K

√
k
,

which for large k is ≤ e−(const)J/K
√

k.

We conclude from all of this that after k′ = (const)K
√

k(log k)/J iterations, with

uniform probability the value of |Y −
∑
i

θi| will have become less than 10 (say). From

then on, the equations (∗) imply that the values of s(n) and |Y −
∑
i

θi| will tend to remain

“reasonable”. Thus, we would be done except for the lingering problem that σ2
θ may be

“stuck” too close to 0.

To handle this problem, we refer again to equations (∗) from the proof of Lemma

5. Direct computation implies that regardless of the values of s(n) and t(n), we have

E(r(n+1) | x(n)) ≥ r(n) for small r(n) (though it’s very close!). Thus, if r(n) is small,

then r(n+1) − r(n) has non- negative mean. Also, it is easily seen to have variance at

least
(

J(b1/K3)
J(b1/K3)+s(n)

)2

, even if θ
(n)
i = µ(n) for all i. (Here the factor (b1/K3) is from the

variance of σ2
θ
(n+1). The rest of the expression comes from the way the law of θi depends

on σ2
θ .) Now, as long as s(n) is bounded independently of J , K, and k, we conclude that

this variance is ≥ O(J2/K6).

Combining these two facts, and writing

r(k′+n) = (r(k′+1) − r(k′)) + (r(k′+2) − r(k′+1)) + . . . + (r(k′+n) − r(k′+n−1)) ,

we see that r(k′+n)−r(k′) will have non-negative mean, and variance ≥ (const)nJ2/K6
√

k.

It follows that for n = k′′ = (const)K6
√

k/J2, with uniform probability we will have

r(k′′+k′) ≥ v2/10 (say). Also, with uniform probability s(k′+k′′) and t(k
′+k′′) will have

stayed “reasonable”, and we will have x(k′+k′′) ∈ R∗.
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Putting all of this together, the lemma follows with k1 = k′ + k′′.

Lemma 8. Let π(·) be the true posterior, let k∗ be as in Lemma 5, and let k, R1 and

k1 be as in Lemma 7. Let t = k1 + k∗ + 1, and let a = π(RC
1 ) and bt = inf

x∈R1
P t(x,RC

1 ).

Then a and bt are bounded above by expressions of the form c3e
−c4

√
k, with c3, c4 > 0

independent of J , K, and k.

Proof. The assertion about a follows from a similar argument to that used in Lemma

6, and is omitted. For the assertion about bt, arguing as in Lemma 7 we note that if the

Markov chain begins inside R1, then the value of |Y −
∑
i

θi| after t steps will tend to be

small. It is straightforward to argue (by considering the tails of the normal distribution)

that the probability that it will be greater than k1/4 will be ≤ c3e
−c4

√
k for appropriate

c3, c4 > 0 independent of J , K, and k.

Remarks.

(1) On Lower Bounds. Theorem 1 provides only upper bounds on how many iterations

are required for the Gibbs sampler Markov chain to converge. But the upper bound of

O(1 + log K
log J ), gotten from part (a) of Theorem 1 by ignoring the (small) second term,

is easily seen to be “sharp up to constants”. That is, if the number of iterations done

is small compared to 1 + log K
log J , then the distance to stationarity will be close to 1, for

all sufficiently large K and J . Indeed, if J ≥ O(K), then O(1+ log K
log J ) = O(1). But we

obviously need at least one iteration, so this rate is clearly correct up to a constant!

Also, for K >> J , O(1+ log K
log J ) = O( log K

log J ), and we claim the quantity O( log K
log J ) is also

necessary to get close to stationarity. Indeed, if we do a number of iterations which is

small compared to log K
log J , then arguing as in Lemma 5, we see that the probability will

be quite small that we will be within 1/
√

K of the fixed point (r∗, s∗, t∗) (unless we

started exactly there!). But it is also easily seen (arguing as in Lemma 6) that π(·)

has most of its mass in this range. Thus, we conclude: the variation distance to π(·)
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will be quite close to 1 if the number of iterations done is small compared to log K
log J .

(2) In principle, Lemma 2 can be used to get rates of convergence for any Markov chain.

The computations, of course, will vary from chain to chain. But the idea of Lemma 3,

in which with large probability the Markov chain will go to a certain small “good” set

R2 within a certain number of iterations k0, would appear to be quite applicable to

Gibbs sampling situations in which there is lots of data. In such situations, the data

will “swamp” the conditional distributions, and they will tend to pile up on certain

particular values (roughly corresponding to the mode of the posterior). Choosing

Q(·) appropriately should allow Lemma 3 to give good rates of convergence for quite

a variety of Gibbs sampler problems.

Appendix. Variation Distance and Coupling.

Lemma 2 above provides a bound on the variation distance between two measures,

using the coupling inequality. Coupling is widely used in Markov chain theory (see for

example [P], or Chapter 4E of [D]), but it may be less familiar to Statisticians. For

completeness, we review it briefly here.

Given probability measures ν1 and ν2 defined on the same probability space, the

variation distance between them is defined to be

‖ν1 − ν2‖var ≡ sup
A
|ν1(A)− ν2(A)| ,

where the supremum is taken over all measurable subsets A. This distance gives a good

idea of how much the measure ν1 differs from the measure ν2.

Given a Markov chain P (·, ·) with stationary distribution π(·), suppose we are able to

define random variables {Xk} and {Yk} such that

(i) L(Xk+1 | Xk) = P (Xk, ·) ;

(ii) L(Yk+1 | Yk) = P (Yk, ·) ;

(iii) L(Y0) = π(·) .

Conditions (i) and (ii) say that each of Xk and Yk marginally follow the transition

law P (·, ·), so that condition (iii) then implies that L(Yk) = π(·) for all k. The variables

{(Xk, Yk)} are then a coupling if there is a random time T such that Xk = Yk for all k ≥ T .
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The coupling inequality then says that the variation distance between L(Xk) and π(·)

is bounded above by the probability that T > k:

‖L(Xk)− π(·)‖ ≤ Prob(T > k) .

To prove this, we simply note that for any subset A,

|L(Xk)(A)− π(A)| = |Prob(Xk ∈ A) − Prob(Yk ∈ A)|

= |Prob(Xk ∈ A, Xk = Yk) + Prob(Xk ∈ A, Xk 6= Yk)

− Prob(Yk ∈ A, Xk = Yk) − Prob(Yk ∈ A, Xk 6= Yk)|

= |Prob(Xk ∈ A, Xk 6= Yk) − Prob(Yk ∈ A, Xk 6= Yk)|

≤ Prob(Xk 6= Yk) ≤ Prob(T > k) .

This completes the proof.

Coupling thus provides a simple method for bounding the variation distance to sta-

tionarity for a Markov chain. The trick then becomes how to define the random variables

{Xk} and {Yk} in such a way that they are a coupling with a useful coupling time T .

Lemma 2 explains how to do this under the additional hypothesis that P k0(x, ·) ≥ εQ(·)

for all x ∈ R.
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