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Abstract

This paper considers ergodicity properties of certain adaptive Markov
chain Monte Carlo (MCMC) algorithms for multidimensional target dis-
tributions. It was previously shown in [18] that Diminishing Adaptation
and Containment imply ergodicity of adaptive MCMC. We derive various
sufficient conditions to ensure Containment, and connect the convergence
rates of algorithms with the tail properties of the corresponding target
distributions. Two examples are given to show that Diminishing Adap-
tation alone does not imply ergodicity. We also present a Summable
Adaptive Condition which, when satisfied, proves ergodicity more easily.

1 Introduction

Markov chain Monte Carlo algorithms are widely used for approximately sampling from com-
plicated probability distributions. However, it is often necessary to tune the scaling and other
parameters before the algorithm will converge efficiently. Adaptive MCMC algorithms modify their
transitions on the fly, in an effort to automatically tune the parameters and improve convergence.

Consider a target distribution 7(-) defined on the state space X with respect to some o-field
B(X) (m(x) is also used as the density function). Let { P, : v € Y} be the family of transition kernels
of time homogeneous Markov chains with the same stationary distribution as , i.e. 7P, = 7 for
all v € V. An adaptive MCMC algorithm Z := {(X,,,T';) : n > 0} can be regarded as lying in the
sample path space Q := (X x ) equipped with a o-field F. For each initial state z € X and
initial parameter v € V), there is a probability measure P(, .y such that the probability of the event
[Z € A] is well-defined for any set A € F. There is a filtration G := {G,, : n > 0} such that Z is
adapted to G.

Some adaptive MCMC methods use regeneration times and other somewhat complicated con-
structions [see 9, 7]. However, Haario et al. [see 10] proposed an adaptive Metropolis algorithm
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attempting to optimise the proposal distribution, and proved that a particular version of this al-
gorithm correctly converges strongly to the target distribution. The algorithm can be viewed as
a version of the Robbins-Monro stochastic control algorithm [see 2, 15]. The results were then
generalized proving convergence of more general adaptive MCMC algorithms [see 4, 1, 24, 3, 5].

A framework of adaptive MCMC is defined as:
1. Given a initial state X := z¢p € X and a kernel Pr, with I'g := 79 € Y. At each iteration n + 1,
Xn+1 is generated from Pr, (X,,-);
2. I'41 is obtained from some function of Xy, .-, X, 41 and Ty, --- , [y
For A € B(X),

Plag0) (Xnt1 € A| Gn) =Py 0)(Xns1 € A| Xp, ) = Pp,, (Xn, A). (1)

In the paper, we study adaptive MCMC with the property Eq. (1). We say that the adaptive MCMC
Z is ergodic if for any initial state xg € X’ and any kernel index v9 € V), ||P(5 40)(Xn € -) — 7r(-)HTV
converges to zero eventually where |u|/y = sup |u(A)].

AEB(X)

Containment is defined as that for any Xg = z¢ and I'g = =g, for any € > 0, the stochastic process
{Mc(Xp,Tp) : n > 0} is bounded in probability P, ), i.e. for all § > 0, there is N € N such that
P (ag,70) (Me(X, Tp) < N) > 1= for all n € N, where Mc(x,y) = inf{n > 1: ||P}(z,) = 7(-) || 1y <
€} is the “e-convergence time”.

Diminishing Adaptation is defined as that for any Xg = x¢ and I'g = o, limy o0 Dy, = 0
in probability P, .y where D,, = sup,cy | Pross (@,) = Pr, (= represents the amount of
adaptation performed between iterations n and n + 1.

?‘)HTV

Theorem 1 ([18]). Ergodicity of an adaptive MCMC' algorithm is implied by Containment and
Diminishing Adaptation.

When designing adaptive algorithms, it is not difficult to ensure that Diminishing Adaptation
holds. However, Containment may be more challenging, which raises two questions. First, is
Containment really necessary? Second, how can Containment be verified in specific examples? In
this paper, we will answer the two questions. In Section 2, two examples are given that explain that
1. Ergodicity holds but neither Containment nor Diminishing Adaptation holds; 2. Diminishing
Adaptation alone is not sufficient for ergodicity of adaptive MCMC. Note that Containment alone
can not guarantee ergodicity was already discussed in [18, see the “One-Two” version running
example]. We also will study simultaneous geometric ergodicity. A summable adaptive condition
is given which can be used to check ergodicity more easily. Some simple conditions for adaptive
Metropolis algorithms implying ergodicity are given. In Section 3, the results are applied to two
examples. The proofs of Section 2 are shown in Section 4.

2 Main Results

2.1 Toy Examples

In this section, two examples are given to show that either Diminishing Adaptation or Contain-
ment is not necessary for ergodicity of adaptive MCMC, and Diminishing Adaptation alone can
not guarantee ergodicity. The state space X in Example 1 is finite. The kernel index space ) in
Example 2 is finite.



Example 1. Let the state space X = {1,2} and the transition kernel

1-6 6
P‘)[ 0 1—9]'

Obviously, for each 0 € (0,1), the stationary distribution is uniform on X .

Proposition 1. For the target distribution and the family of transition kernels in FExample 1,
consider a state-independent adaptation: at each time n > 1 choose the transition kernel index

Op—1 = ﬁ for some fixred r > 0 (Py, is the initial kernel). Show that
(i) For r > 0, Diminishing Adaptation holds but Containment does not;

(i) Forr > 1, poPy, Py, - -+ Py, — p where po = (1,0)7 and p = (142, 152)7 for some o € (0,1);

ili) For 0 < r <1 and a probability measure poy on X, poPp, Py, - - - Py, — Unif(X).

See the proof in Section 4.1.1.

Remark 1. The chain in Proposition 1 is a time inhomogeneous Markov chain. It can be suited
into the framework of adaptive MCMC. Although very simple, it reflects the complexity of adaptive
MCMC to some degree.

1. For r > 1, the limiting distribution of the chain is not uniform. So it shows that Diminishing
Adaptation alone cannot ensure ergodicity.

2. For 0 < r <1, the algorithm is ergodic to a uniform distribution, but Containment does not hold.
The reason is that although the “e convergence time” goes to infinity (see Eq. (23)), the distance
between the chain and the target is decreasing. See another discussion [5, Section 4.

Proposition 2. For the target distribution and the family of transition kernels in Example 1,
consider a state-independent adaptation: for k = 1,2,---, at each time n = 2k — 1 choose the
transition kernel index 0,—1 = 1/2, and at each time n = 2k choose the transition kernel index
0,—1 = 1/n. Both Diminishing Adaptation and Containment do not hold. The chain converges to
the target distribution Unif(X').

See the proof in Section 4.1.1.

Example 2. Let the state space X = (0,00), and the kernel index set Y = {—1,1}. The target

I(z>0)

density m(x) is a half-Cauchy distribution on the positive part of R. At each time n, run

1422
the Metropolis-Hastings algorithm where the proposal value Y, is generated by
Y= X0+ 2y (2)
with i.i.d standard normal distribution {Z,}, i.e. if I'n_y = 1 then Y, = X,—1 + Z,, while if
I'_1=-1thenY, = m The adaptation is defined as
I'n— 1 I'n— 1
Iy = _Fn—l]I(Xnn '< ﬁ) +Fn—1H(Xnn > g)’ (3)

i.e. we change I from 1 to —1 when X < 1/n, and change I from —1 to 1 when X > n, otherwise
we do not change I.

Proposition 3. The adaptive chain {X,, : n > 0} defined in Example 2 does not converge weakly
to m(-). Containment does not hold.

See the proof in Section 4.1.2.



2.2 Simultaneous Drift Condition and Summable Adaptive Condition

[18] showed that the simultaneously strongly aperiodically geometrically ergodic condition (SSAGE)
implies Containment. If there is C' € B(X), a function V : X — [1,00),6 > 0,A < 1, and b < o0,

such that sup V(z) < oo, and
xeC
(i) for each v, 3 a probability measure v, (-) on C' with P,(x,-) > dv,(-) for all z € C, and

(il) P,V < AV + b,
we say that the family {P, : v € Y} is SSAGE.

The idea of utilizing SSAGE to check Containment is that SSAGE guarantees there is a uniform
quantitative bound of HPW”(x, )= 7r(-)HTV for all v € ). However, SSAGE can be generalized a
little. First let us review [23, Theorem 5.

Proposition 4. Suppose a Markov chain P(x,dy) on the state space X. Let {X, : n > 0} and
{Y,, : n > 0} be two realizations of P(x,dy). There are a set C C X, § > 0, some integer m > 0,
and a probability measure v, on X such that

P"(x,-) > dvp(+) for x € C.
Suppose further that there exist 0 < A <1, b >0, and a function h : X x X — [1,00) such that
E[h(X1, Y1) | Xo =z, Y0 = y] < A(z,y) + bloxe((z,y)).

Let A = sup, yyeoxo E[R(Xm, Yn) | Xo = z,Yo = y], p = L(Xo) be the initial distribution, and 7
be the stationary distribution. Then for any j > 0,

1£(X0) — 7|y < (1 — )/ g \n=imtLi=1], | [h(Xo, Yo)].

To make use of Proposition 4, we consider the simultaneously geometrically ergodic condition
(SGE) studied by [22]. If there is C' € B(X), some integer m > 1, a function V : X — [1,00),6 >

0,A < 1, and b < oo, such that supV(z) < oo, 7(V) < oo, and
zeC
(i) C is a uniform v,,-small set, i.e., for each v, 3 a probability measure v, () on C with PJ*(z,-) >

dvy(-) for all x € C, and
(i) P,V < AV + blg,
we say that the family {P, : v € Y} is SGE.

Note that the difference between SGE and SSAGE is that a uniform minorization set C' for all
P, is assumed in SSAGE, however a uniform small set C' is assumed in SGE [see the definitions of
minorization set and small set in 14, Chapter 5].

Theorem 2. SGE implies Containment.
See the proof in Section 4.2.

Corollary 1. Consider the family {Py : v € Y} of Markov chains on X C R?. Suppose that for
any compact set C' € B(X), there exist some integer m > 0, 6 > 0 and a measure v(-) on C for
v € Y such that PJ*(x,-) > dvy(:) for all x € C. Suppose that there is a function V : X — (1,00)
such that for any compact set C' € B(X), supV(z) < oo, w(V) < o0, and

xeC

. PV (z)
lim sup sup —
|z|—o00 vEY V(%)

<1 (4)
Then for any adaptive strategy using only {Py : v € Y}, Containment holds.

4



See the proof in Section 4.2.

Convergence with sub-geometric rates is studied using a sequence of drift conditions in [25]. It
was shown by [12] that if there exist a test function V' > 1, positive constants ¢ and b, a petite set
C and 0 < a < 1 such that

PV <V —cV® +blg, (5)

then Markov chain converges to stationary distribution with a polynomial rate. [5] showed that
adaptive MCMC of all Markov transition kernel with simultaneous polynomial drift is ergodic under
some conditions. The following proposition is a part of the result.

Proposition 5. Consider an adaptive MCMC' algorithm on a state space X. Suppose that there
is a set C C X with w(C) > 0, some constant § > 0, some integer m > 0, and some probability
measure v,(-) on X such that P)'(x,-) > 0lc(x)vy () for v € Y. Suppose that there are some
constants a € (0,1), B € (0,1], ' >b >0, ¢ > 0, and some measurable function V(z) : X — [1,00)
with ¢V (z) >V on C¢, sup,ec V(z) < 0o such that

P,V <V —cV*+blg, Vyel. (6)
Then for any adaptive strategy using {Py : v € Y} Containment holds.

The idea for the proof is to find the uniform upper bound of HP,;L(JZ, ) —=7() HTV. The bound is
just dependent of V' (), 6, n, 7(V?), and C. Since all the transition kernels satisfy the simultaneous
polynomial drift condition (Eq. (6)), {V(X,) : n > 0} is bounded in probability can be shown. So,
Containment holds. [3] study Markovian Adaptation (the joint process {(X,,I'n) : » > 0} is a
Markov chain) and give the similar result as the above proposition. But Proposition 5 can be
applied to more general adaptive MCMC satisfying Eq. (1) [see details in 5].

In the following result, we use a simple coupling method to show that one summable adaptive
condition implies ergodicity of adaptive MCMC.

Proposition 6. Consider an adaptive MCMC {X,, : n > 0} on the state space X with the kernel
index space Y. Under the following conditions:

(i) Y is finite. For any y € Y, Py is ergodic with the stationary distribution ;

(ii) At each time n, Ty, is a deterministic measurable function of Xo,--- , Xn, Lo, -+, Tp_1;

(iii) For any initial state xo € X and any initial kernel index vy € ),

Z]P)(Fn 7& Fn—l ’ XO = To, I‘0 = 70) < 00, (7)

n=1
the adaptive MCMC {X,, : n > 0} is ergodic with the stationary distribution .
See the proof in Section 4.2.

Remark 2. In Example 2, the transition kernel is changed when X}:”_l reaches below the bound
1/n. It can be shown that if the boundary is defined as 1/n" with r > 1, the adaptive algorithm is
ergodic with half-cauchy distribution because of Proposition 6. To show it, we only need to adopt
the procedure in Lemma 2 to check Eq. (7).



2.3 Adaptive Metropolis algorithm

The target density 7(-) is defined on the state space X C R%. In what follows, we shall write (-, -)
for the usual scalar product on R?, |-| for the Euclidean and the operator norm, n(z) := z/ |z| for
the normed vector of z, V for the usual differential (gradient) operator, m(z) := Vn(z)/ |Vn(z)],
Bl (z,r) = {y € R? : |y — x| < r} for the hyperball on R? with the center 2 and the radius r,
Bé(x,r) for the closure of the hyperball, and Vol(A) for the volume of the set A C RY.

Say an adaptive MCMC is an Adaptive Metropolis-Hastings algorithm if each kernel P, is from
a Metropolis-Hastings algorithm

P (o) = o)y ) + |1~ [ o200 .02 ac(a) ®)

where Q- (x,dy) is the proposal distribution, a(z,y) = (%ﬁ:zg A 1) I(y € X), and pq is
Lebesgue measure. Say an adaptive Metropolis-Hastings algorithm is an Adaptive Metropolis algo-
rithm if each ¢, (z,y) is symmetric, i.e. ¢ (x,y) = ¢y(z —y) = ¢,(y — x).

[11] give conditions which imply geometric ergodicity of symmetric random-walk-based Metropo-
lis algorithm on R? for target distribution with lighter-than-exponential tails, [see other related

results in 13, 20]. Here, we extend their result a little for target distributions with exponential tails.

Definition 1 (Lighter-than-exponential tail). The density 7(-) on R? is lighter-than-exponentially
tailed if it is positive and has continuous first derivatives such that

lim sup (n(z), Vloeg n(z)) = —oc. 9)

|z|—o00
Remark 3. 1. The definition implies that for any r > 0, there exists R > 0 such that

m(x 4+ an(z)) — 7(x)
m(x)

< —ar, for |z| > R,a > 0.

It means that w(x) is exponentially decaying along any ray, but with the rate r tending to infinity

as T goes to infinity.

2. The normed gradient m(z) will point towards the origin, while the direction n(x) points away from

the origin. For Definition 1, (n(x),Vlogm(x)) = Wﬂg)' (n(x),m(x)). Evenlimsup (n(z),m(z)) <
|z|—o0

0, Eq. (9) might not be true. E.g. m(x) ﬁ, z € R. m(z) = —n(x) so that (n(x),m(z)) = —1.

(n(z),Vlegm(z)) = 220 o lim (n(z),Vlegm(z)) = 0.

- 2
I+ |z|—o00

Definition 2 (Exponential tail). The density function w(-) on R is exponentially tailed if it is a
positive, continuously differentiable function on R, and

Ny := — limsup (n(z), Vlegn(z)) > 0. (10)

|z| =00
Remark 4. There exists f > 0 such that for x sufficiently large,
(n(z), Vlogm(z)) = (n(x), m(x)) |Vlegn(z)| < —F.

Further, if 0 < — (n(x),m(x)) <1, then |Vlogn(x)| > .



Define the symmetric proposal density family € := {q : q(x,y) = q(x —y) = q(y — x)}. Our
ergodicity result for adaptive Metropolis algorithms is based on the following assumptions.

Assumption 1 (Target Regularity). The target distribution is absolutely continuous w.r.t. Lebesgue

measure (1g with a density ™ bounded away from zero and infinity on compact sets, and sup 7(zx) <

TeEX
0.

Assumption 2 (Target Strongly Decreasing). The target density m has continuous first derivatives
and satisfies
m = —limsup (n(z), m(z)) > 0. (11)

|z|—o00

Assumption 3 (Proposal Uniform Local Positivity). Assume that {q, : v € Y} C €. There exist
¢ > 0 such that
¢ := inf inf z) > 0. 12
inf inf 4() (12)

Given 0 < p < ¢ < 0o, for u € S (891 is the unit hypersphere in R%.) and 6 > 0, define
Cpq(u,0) := {z =af | p<a<q eSSl —ul < 9/3} : (13)

Assumption 4 (Proposal Moment Condition). Suppose the target density 7 is exponentially tailed
and {qy : v € Y} C €. Under Assumptions 2, assume that there are € € (0,m1), 8 € (0,72), §, and
A with0<%§5<A§oosuchthat

3e+1)

=1 (14)

inf / 12| ¢y (2) pa(dz) >
(uy)€SIIXY Cs,a(u,€) ’ ’Y( (

Remark 5. Under Assumption 3, let E(x,dy) be the transition kernel of Metropolis-Hastings al-
gorithm with the proposal distribution Q(z,-) ~ Unif(B4(z,¢/2)). For any v € ¥, Py(z,dy) >
Vol (B4(0,¢/2))P(z,dy). Under Assumptions 1, by [20, Theorem 2.2], any compact set is a small

set for P so that any compact set is a uniform small set for all Py .

Remark 6. 1. Assumption 4 means that the proposal family has uniform lower bound of the first
moment on some local cone around the origin. The condition specifies that the tails of all proposal
distributions can not be too light, and the quantity of the lower bound is given and dependent on
the tail-decaying rate no and the strongly decreasing rate my of target distribution. Assumptions 1-4
are used to check SGE which is just sufficient to Containment.

2. If the proposal distribution in {q, : v € Y} C € is a mizture distribution with one fixed part, then
Assumption 4 is relatively easy to check, because the integral in Eq. (14) can be estimated by the
fizxed part distribution. Especially for the lighter-than-exponentially tailed target, Assumption 4 can
be reduced for this case. We will give a sufficient condition for Assumption 4 which can be applied
to more general case, see Lemma 1.

Now, we consider a particular class of target densities with tails which are heavier than exponen-
tial tails. It was previously shown by [8] that the Metropolis algorithm converges at any polynomial
rate when proposal distribution is compact supported and the log density decreases hyperbolically
at infinity, log () ~ — |z|®, for 0 < s < 1, as |z]| = oo.



Definition 3 (Hyperbolic tail). The density function 7(-) is twice continuously differentiable, and
there exist 0 < m < 1 and some finite positive constants d;, D;, 1 = 1,2 such that for large enough
|z,

0 <dolz|™ < —logm(z) < Dy |z|™;

0<d |z <|Viegnm(z)| < Dy |z|™";

0<dy|z|™?< (V2 log m(z)| < Dy |z|™ 2,

Assumption 5 (Proposal’s Uniform Compact Support). Under Assumption 3, there exists some
M > ¢ such that all g,(-) with v € Y are just supported on B4(0, M).

Theorem 3. An adaptive Metropolis algorithm with Diminishing Adaptation is ergodic, under any
condition of the following:

(i). Target density  is lighter-than-exponentially tailed, and Assumptions 1 - 3;

(ii). Target density 7 is exponentially tailed, and Assumptions 1 - 4;

(iii). Target density 7 is hyperbolically tailed, and Assumptions 1 - 3 and 5.

3 Applications

Here we discuss two examples. The first one (Example 3) is from [17] where the proposal
density is a fixed distribution of two multivariate normal distributions, one with fixed small variance,
another using the estimate of empirical covariance matrix from historical information as its variance.
It is a slight variant of the famous adaptive Metropolis algorithm of Haario et al. [10]. In the
example, the target density has lighter-than-exponential tails. The second (Example 4) concerns
with target densities with truly exponential tails.

Example 3. Consider a d-dimensional target distribution 7(-) on R? satisfying Assumptions 1
- 2. We perform a Metropolis algorithm with proposal distribution given at the n** iteration by
Qn(z,) = N(z,(0.1)21,4/d) for n < 2d; For n > 2d,

Onl,) = (1 —-0)N(z,(2.38)2%,,/d) + 0N (x,(0.1)%1;/d), Y, is positive definite, (15)
"l Nz, (0.1)2,/d), Y, is not positive definite,

for some fixred 0 € (0,1), Iy is d x d identity matriz, and the empirical covariance matrix
1 - T - =11
Sn = Z;XiXi —(n+1X,X, |, (16)
1=

where X,, = %H Yoio Xi, is the current modified empirical estimate of the covariance structure of
the target distribution based on the run so far.

Remark 7. The fived part N(z,(0.1)21;/d) can be replaced by Unif(B%(z, 7)) for some 7 > 0. For
targets with lighter-than-exponential tails, T can be an arbitrary positive value, because Assumption 3
holds. For targets with exponential tails, T is dependent on m1 and 1s.

Remark 8. The proposal N(z,(2.38)2%/d) is optimal in a particular large-dimensional context,
[see 21, 16]. Thus the proposal N(z,(2.38)2%,,/d) is an effort to approzimate this.

Remark 9. Commonly, the iterative form of Eq. (16) is more useful,

1 1 . .
Yp = : n Y1+ n+1 (X" o anl) (Xn - ‘Xn*l)—r ' (17)




Proposition 7. Suppose that the target density m is exponentially tailed. Under Assumptions 1-4,
| X0 — Xn_1| and ||Sy — Sp_i|lyy converge to zero in probability where where |-|| \; is matriz norm.

Proof: Note that in the proof of Theorem 3, some test function V(z) = en~*(z) for some s € (0,1)
and some ¢ > 0 is found such that SGE holds.

To check Diminishing Adaptation, it is sufficient to check that both ||%, — ¥,_1||,, and ‘Yn — Yn_l‘
converge to zero in probability where ||-||,, is matrix norm.

By some algebras,

2n - Enfl
1 1 (1722 om - 1 T
— T v T == — _ _ _ T
BT R — <n Zi_o Xids > T oA T T (X"X"—l * X"‘IX"> '

Hence,

||En - Enfl”M
#l [ Xn XTHM

‘X x| 1+X

0 Z?;ol 2ad

- =T
+ 2 [ XX, + (18)

n+1 ‘

indent To prove ¥, — >, 1 converges to zero in probability, it is sufficient to check that HXnXJ H e
%Z:‘L;ol X’LXZ—F X, 1X H and HX Xn 1 +X,_
Since limsup (n(z), Vlog 7(z )> < 0, there exist some K > 0 and some > 0 such that

|z|—o00

)

u are bounded in probability.
sup (n(z), Vlegm(z)) < —5.
|z[>K

For |z| > K, W < —f where r > 1 and y = rz, i.e. (%)_8 > 5l Tak-

—s r—
ing 79 € R? with |zo| = K, V(z) = en™%(20) (w(w)) > cae*® 7 7l for 2 = rzg, r > 1, and

(o)
a = li‘anﬂ*s(y) > 0, because of Assumption 1. If r > 2 then =1 > 0.5. Therefore, as |z| is
yI<

extremely large, V() > |#|?. We know that sup,, E[V(X )] < oo (See Theorem 18 in [18]).

Since HXHX;LFHM = supu' X, X,Ju < sup lul? | X, ? < | Xnl% is bounded in prob-

|u[=1 |ul=

ability.

Obviously,

Then, for K > 0,

1 n—1
Rl
P (n ; HXZXZ-

n—1
=0

[Xn < i Xito Xl So,

11
M>K) <KHZ;EH\M y

Hence, ZT u is bounded in probability.

n

P(|Xn| > K) < ;{il E[|X;]] < %supE[V(X )]



|Yn} is bounded in probability. Hence,

7n_1yz_1 HM is bounded in probability.
Finally,
7T J—
X0 XKy + K1 X,

< 2[X,| [ X
M

Therefore, niz_l + X

,T u is bounded in probability. O

Theorem 4. Suppose that the target density m in Example 3 is lighter-than-exponentially tailed.
The algorithm in Example 3 is ergodic.

Proof: Obviously, the proposal densities has uniformly lower bound function. By Theorem 3 and
Proposition 7, the adaptive Metropolis algorithm is ergodic. O

The following lemma is used to check Assumption 4.

Lemma 1. Suppose that the target density 7 is exponentially tailed and the proposal density family
{qy : v € Y} C €. Suppose further that there is a function ¢~ (2) := g(|z]), ¢~ : RY — R* and
g:RY — R, some constants M > 0, e € (0,m1), B € (0,12) and % VM <6< A such that for
|z| > M with the property that ¢ (z) > q~ (z) for vy € Y and

d—1
(d—1)r"z <d—1 1) /A J 3(e+1)
VoM 2 g, (82 2 ddt > AET ) 19
gt T2 a) f O ) 1
where 1y is deﬁned in Eq. (10), 772 is defined in Eq. (11), r:= 13V36 — €2, and the incomplete beta
function Beg(t1,1t2) f th=1(1 —t)2=1dt, then Assumption 4 holds.

Proof: For u € §471,

A
z z z) = d w
| o gD | ot /{&Smg_m/g} (d€)

where w(-) denotes the surface measure on S4~1.
By the symmetry of u € S 1, let u = ¢4 := (0,---,0,1). So, the projection from the piece
———

d—1
{§ €Sl |6 —ul < 6/3} of the hypersphere S%! to the subspace R%! generated by the first
d — 1 coordinates is d — 1 hyperball B4=1(0,r) with the center 0 and the radius r = 15V36 — €2,

Define f(z \/1 —(Z+- 422

w <{§ eS8l e—ul < e/3}> :/Bd_l( 1+ |VSfPdz - dzgy

i [ e (1513)

L2
5
o =

Hence,

d— 11"z d—1 1 A
[ et - @-urs g, ( ) [ ot (20)
Cs, A (u,€) 2 2 9

Therefore, the result holds. O



Example 4. Consider the standard multivariate exponential distribution w(x) = cexp(—A\|z|) on
R?® where A > 0. We perform a Metropolis algorithm with proposal distribution in the family
{Q+()},cy at the nth iteration where

Qn(a, ) = Unif (Bd(as, A)) , n < 2d, or X, is nonsingular,
niE )= (1 —0)N(z,(2.38)2%,,/d) + 0 Unif (B¥(z,A)), n>2d, and %, is singular,

1)
for 6 € (0,1), Unif (BY(x,A)) is a uniform distribution on the hyperball B(x, A) with the center
x and the radius A, and ¥, is as defined in Eq. (16). The problem is: how to choose A such that
the adaptive Metropolis algorithm is ergodic?

Proposition 8. There exists a large enough A > 0 such that the adaptive Metropolis algorithm of
Ezample 4 is ergodic.

Proof: We compute that Vr(z) = —An(z)m(x). So, (n(z), Vlegn(z)) = —X and (n(z), m(z)) = —1.
So, the target density is exponentially tailed, and Assumptions 1 and 2 hold. Obviously, each
proposal density is locally positive. Now, let us check Assumption 4 by using Lemma 1. Because

>
Q.

)

MY

Vol(BY(x, A)) = T

the function g(t) defined in Lemma 1 is equal to m. 71 defined in Eq. (10) and 79 defined

in Eq. (11) are respectively A and 1. Now, fix any € € (0,1) and any 0 € (%, o0). The left hand side
of Eq. (19) is

. =1 . A . _ d+1
(dQF 1d)7T1 Be,2 (d 1’1> / g(t)t'dt = 2 d1+)1 Bes <d1’ 1>.A <1 a 6d+1> ’

(%) 2 2] Js 2(d + 1)Be(%5,1/2) 2 "2 A
where Be(z,y) and Be,(z,y) are beta function and incomplete beta function, r is a function of €
defined in Lemma 1.

Once fixed € and §, the first two terms in the right hand side of the above equation is fixed.
Then, as A goes to infinity, the whole equation tends to infinity. So, there exists a large enough
A > 0 such that Eq. (19) holds. By Lemma 1, Assumption 4 holds. Then, by Proposition 9,

Containment holds. By Proposition 7, Diminishing Adaptation holds. By Theorem 1, the adaptive
Metropolis algorithm is ergodic. O

4 Proofs of the Main Results

4.1 Proofs of Section 2.1
4.1.1 Proofs of Example 1

PROOF OF PROPOSITION 1: Since the adaptation is state-independent, the stationarity is pre-
served. So, the adaptive MCMC X,, ~ 6Py, Py, Py, --- Py, _,(-) for n > 0 where § := (6(,6®) is
the initial distribution.

The part (i). Consider ||Py, ., (z,-) — Py, (

n—1

HTV For any x € X,

[Poi1 (@) = Po, (2, )| pyy = 1041 — O] = 0.

n+1

11



Thus, for > 0 Diminishing Adaptation holds.
By some algebra,

1
175" (2, ) =7 ()llpy = 5 11— 26/ (22)
Hence, for any € > 0,

log(e) — log(1/2)
ME Xn7 977, 2 . 2
( ) log [1— 20, — +00 as n — 0o (23)

Therefore, the stochastic process { M¢(X,,0,) : n > 0} is not bounded in probability.
The parts (ii) and (iii). Let p, := (MS),M&?)) ;= 8P, -+ Py.. So,

Mgzl—I)—l = Mg) = Ont1 (/M(zl) - M@) and /%(12421 = /%(12) + Oyt (,u%l) - Mg)) .

Hence,
. 2 n+1
NSH)—l — /‘;H = (5(1) — 5(2)) H(l —20;).
k=0

For r > 1, HZié(l — 20y) converges to some « € (0,1) as n goes to infinity. ,uSJ)rl - Mﬁl —

((5(1) — 5(2)) a. For 0 < r <1, MSJ_I — MS_)H — 0. Therefore, for r > 1 ergodicity to Uniform
distribution does not hold, and for 0 < r < 1 ergodicity holds. 0

PROOF OF PROPOSITION 2: From Eq. (22), for € > 0, M (Xox—_1,02k-1) > % — 00 as

k — 00. So, Containment does not hold.

HPng (x,-) — Py,,_,(x, -)HTV = ‘% — i} — % as k — 0o. So Diminishing Adaptation does not hold.

Let 6 := (6(V,5®) be the initial distribution and g, := (ug),,ug)) = 0Py, - Pp,. ug) - ,ug) =
[(n+1)/2]

(6 — g@no-n/2A-1" 1] (1 — ﬁ) — 0 as n goes to infinity. So ergodicity holds. O
k=1

4.1.2 Proof of Proposition 3
First, we show that Diminishing Adaptation holds.

Lemma 2. For the adaptive chain {X,, : n > 0} defined in Example 2, the adaptation is diminish-
mng.

Proof: For v = 1, obviously the proposal density is ¢,(x,y) = ¢(y — ) where ¢(-) is the density
function of standard normal distribution. For 4y = —1, the random variable 1/x+ Z,, has the density
¢(y — 1/z) so the random variable 1/(1/x + Z,) has the density ¢, (z,y) = ¢(1/y — 1/z)/y>.

The proposal density

_J yely—2) v=1
wley) = { p(1/y —1/2)[y* v=-1

For v = 1, the acceptance rate is min (1,%) Iy € X) = }fy‘z]l(y > 0). For v =
1 2
— is mi w) — mi 2 $/21/y)/ _
1, the acceptance rate is min <1 I(y € X) = min (1, Oy P I(y > 0)

» w(x) gy (7,y)

12



min (1 1‘”72) I(y > 0).

9 1+y72
So for v € ), the acceptance rate is
: W(y)qw(y,x)> . 1+ a2
ay(x,y):=min |1, ———F |I(y € X) =min | 1, —— | [(y € X). 24
v(3) ( @y ) Y ym )W EY) 24
r

From Eq. (3), [I'y, # 1] = [Xn
inhomogeneous Markov chain,

"=t < 1/n]. Since the joint process {(X,,[';) : n > 0} is a time

P(T, #Th1) —/ P(XInt < 1/n| Xy 1 =2,Th 1 =7)P(X, 1 €dz, T,y € dy)
XxY

= Py(z,[t >0:¢ <1/n])P(X,,—1 € dz, Ty € dv)
XxY

:/ Py(z,]t > 0: 87 < 1/n))P(Xp_1 € dz, T € dv)
2721/ (n—1)

where the second equality is from Eq. (1), and the last equality is from P(XL» > 1/n) = 1 implied
by Eq. (3).
So for any (x,7v) € [(t,s) € X x Y :t° > 1/(n —1)],

0o —z7+1/n
Pya,[t>0:¢7 < 1/n]) = /0 07 < Una ey = [ el
Since —z7 +1/(n—1) <0,
%gp(—gﬂ) < Py(a,[t>0: 0 < 1/n]) < g)) (25)

‘We have that

1
P(T, £ 1) < . 26
Therefore, for any € > 0,
P <sug | Pr,. () = Pr,_, (=, -)HTV > e) <Py, #I'n—1) = 0.
Te
O

1+X2F

n—1

From Eq. (24), at the n'" iteration, the acceptance rate is ar, _, (X,_1,Y,) = min (1, ’2}_1> Iy, >

1+Yn n—1
0). Let us denote Yy, := Yp "' and X,, := X' The acceptance rate is equal to

1+ X2 -
min [ 1, ——2=1 ) I(¥,, > 0).
14Y;?

From Eq. (3), XIn = X, " 'I(X," " < 1/n) + Xp"'I(X5""" > 1/n). When Y, is accepted, i.e.
Xn = In,

[V, <1/n] =Xt < 1/n] and XL» = YV, 1(Y, < 1/n) 4+ Y,I(Y, > 1/n).

13



On the other hand, from Eq. (2), the conditional distribution Y, | Xpo1is N(X,_1,1).

From the above discussion, the chain X := {X,, : n > 0} can be constructed according to the
following procedure. Define the independent random variables Z, NN (0,1), U, i Bernoulli(0.5),
and T, = Unif (0, 1).

Let Xo = X(l; 9. At each time n > 1, define the variable

Y = Xn1 = Unl|Zn| + (1 = Upn) | Zn) . (27)

Clearly, —U,, |Z,| + (1 = U,) | Zx| 4 N(0,1) (i means equal in distribution).
1+X2

1+$21> I(Y;, > 0) then

If T,, < min <1,

X, =Y, <1/n)Y, L +1(Y, > 1/n)Y; (28)

otherwise X,, = X,,_1.

Note that:
1. The process X is a time inhomogeneous Markov chain.
2. P(X,, >1/n)=1for n>1.
3. At the time n, U, indicates the proposal direction (U, = 0: try to jump towards infinity; U, = 1:
try to jump towards zero). |Z,| specifies the step size if the proposal value Y, is accepted. T), is
used to check whether the proposal value Y, is accepted or not. When U,, = 1 and Y, > 0, Eq. (28)
is always run.

For two integers 0 < s < t and a process X and a set A C X, denote [Xg; € A] := [X; €
A; Xgp1 € A3 Xp € Aland s : t := {s,s+ 1,--- ,t}. For a value x € R, denote the largest
integer less than x by [z].

In the following proofs for the example, we use the notation in the procedure of constructing
the process X.

-2
Lemma 3. Let a = (% — V2 ) . Given 0 <r <1, for [z] > 121

127
P(Jie(kt): (kt[a]), Xi<2/2| Kp=2) < (@
TR ey S

Proof: The process X is generated through the underlying processes {(ffj,Zj,Uj,Tj) 2 j > 1}
defined in Eq. (27) - Eq. (28). Conditional on [X} = ], we can construct an auxiliary chain
B := {Bj : j > k} that behaves like an asymmetric random walk until X reaches below z/2, and
B is always dominated from above by X.

It is defined as that B = f(k; For j > k, if Xj_l < /2 then B; := Xj, otherwise
1. If proposing towards zero (U; = 1) then B also jumps in the same direction with the step size

14+X2
|Z;| (in this case, the acceptance rate min (1, % is equal to 1);
j
2. If proposing towards infinity (U; = 0), then Bj is assigned the value B;_1 + |Z;| (the jumping
1+(x/2)°

direction of B at the time j is same as X) with the acceptance rate (independent of

14+(z/2+]Z;])?

Xj—1)7 i.e. fOI‘j >k,

Bj=1(X;_1 < z/2)X; +L(Xj_1 > 2/2) (Bj_1 — I;(z)) (29)

14



where

T 2
Lj(x) :=Uj|Z;| = (1 = Uj) |Z;] T <TJ <7 +1(;r/é J/r2|)Zj,)2> :

Note that
1. {Z;,U;,Tj : j > k} are independent so {I;(x) : j > k} are independent.

2. When Xj_l > x/2 and U; = 0 (proposing towards infinity), the acceptance rate 1 >

X2
%, so that [T] < %] C [T] < té;l} which is equivalent to [Bj — Bj_1
J

1Z]] € [Xj — Xj1 = |Zj|]. Therefore, B is always dominated from above by X.
Conditional on [X}, = z],

BFie(k+1): (4[], Xi<z/2)C[Fe (k+1): (k+[2]'), B; <z/2]
and for i € (k+1) : (k + [z]'*7),
[B:(i-1) = /2 Bi < x/2]

t—1 i
C[Bx > /2By~ > Ii(w)>a/2forallt € (k+1): 5By — Y  I(x) <x/2].
l=k+1 I=k+1

So,
IP’(H@' e (k+1): (k+ [z, X; <z/2| X :x>
<P(3Jie(k+1): (k+[z]"™), By — ZZ: Ii(z) <z/2|By=x
j=k+1

<P S; > /2
<P( max, 51> 2/2)

=P(max S; > ¢"/1+7) /2)
lel:q

1+X2
1+)7j2

where Sy = 0 and S; = Zé‘:1 It j(z) and ¢ = [2]'7. {I;(x) : k < j < k+1} and By are independent

so that the right hand side of the above equation is independent of k.
By some algebra,

2

. 2 .

w2
VT

2
> € [0,1].

Let p; = IE[S’I] and S; = S; — 1 and note that y is increasing as [ increases, and kg € [0,

0 < E[li(z)] = %E

|Zif (2 + |Zi))
1+ (2/2+|Zi)?

11 L+ (z/2)* :
Var[li(z)] = 5 + SE [Zi|2 1+ (z/2+ |Zif)2} K (E

So {S;:i=1,---,q} is a Martingale. By Kolmogorov Maximal Inequality,
P(méliX S; > ¢/ (47 /2) gIP(?lzlix Sy > ¢V /2 — )
‘q €l

le
qVar[Iy ()]
~@ 2=
[x]lJrr a
< 2 < 1—r"
la] _ ww) [z]
(-2

15




1
The last second inequality is from [z] > 1277 > (%) o implying 5 lz] 7\/3?]T. O

Assume that X,, converges weakly to 7(-). Take some ¢ > 1 such that for the set D = (1/¢,¢),
m(D) = 9/10. Taking a r € (0, 1), there exists N > 2¢V 1277 %ﬁ v /T exp(Wl_C)T) (ais
defined in Lemma 3) such that for any n > N + 1, P(X,, € D) > 0.8. Since [X,, € D] = [X}" € D]
and XT £ X, P(X, € D) > 0.8. So, P(X,, > %) < 0.2 for n > N.

Let m = exp(m)hﬂ—l)—l that implies m > n, m—n < n'*" (because n > 24/7 exp(m)),

and log(?_tll) = 0.8¢1(_c). Then
— ~ 1 ~ n

From Eq. (27) and Eq. (28), [172-4_1 < [(Xip1 = 37;1

H%] = > i + 1] for any ¢ > 1. Consider

j€mn:(m—1). Since X is a time inhomogeneous Markov chain,

1
P (X € D,Y]H X(J+1 > n/2)
J j+1
~ - 1
PO% € DJF (Xj1 = Vi < 4q | € D)
P (X(j+2): | X1 )
J+1
- ~ 1 . =
= P(Xj € D)]P) Xj+1 =3 J
Yin
~ ~ 1
1-P| X, <n/2forsomete(j+1):m| Xy == ' :
Yi

From Eq. (25), for any = € D,

P(Yj“<41rl‘X —n) =P, {teX t<1/(j+1)}) e [?(_C),‘PO)}

<
_l_
[

.
_l_
[

So,
o(—c)
j+1°

- 1 -
PYiji<——|X;€D) >
(J+1 j+1| i€ ) =
Hence, for z > j + 1,
P(thn/QfOI'SOHlete(j+1)lm’Xj+1:.T)
SP(thm/QforsometE(j+1):m\)~(j+1::c>

<P (f(t <x/2forsomet € (j+1): (5 + [z]") | Xjp1 = :U)
a a

[x]lfr

< e
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because of /2 > n/2, m —n < n'*", and Lemma 3. Thus,

5 - 1
P| X; <n/2forsomete (j+1):m| X1 ==
Yt

. a
>j+1] < T
Therefore,

m—1
n a 1
P(Xm > 5) 208¢(=c)(1 — =) 2 j+1

=n

L Ylog((m+1)/(n+1)) = (1 -

nl—r

>0.8p(—c)(1 — ) > 0.5.

nl—r

Contradiction! By Lemma 2, Containment does not hold.

4.2 Proofs of Section 2.2

PROOF OF THEOREM 2: Let {X,([Y) :n > 0} and {Xfﬂ) : n > 0} be two realizations of P,
for v € Y. Define h(z,y) = (V(z) + V(y))/2. From (i) of SGE, E[b(X", v\ | X" =
:U,YO('Y) = y] < M(z,y) + bloxe((w,y)). It is not difficult to get PV (x) < AX"V(z) + bm so
eayecxc B V) | X = 2, Y = 4] < A supe V + bm =: B.

Consider E(X((]'Y)) = 05 and j := /n. By Proposition 4,

A= sup

P2 (@, ) = 7()]| py < (1= )VP/mlp An=vim L pVi=l(y () 4 (V) /2. (32)

Note that the quantitative bound is dependent of x, n, §, m, C, V and w, and independent of
~. As n goes to infinity, the uniform quantitative bound of all HPJ/1 (z,-) — W(')HTV tends to zero for
any x € X.

Let {X, : n > 0} be the adaptive MCMC satisfying SGE. From (ii) of SGE, sup,, E[V(X,,) |
Xo = z,Tg = ] < oo so the process {V(X,,) : n > 0} is bounded in probability. Therefore, for
any € > 0, {M.(X,,I,) : n > 0} is bounded in probability given any Xy = x and I’y = 7p. O

PROOF OF COROLLARY 1: From Eq. (4), letting A = lim sup|;|_,o Sup,cy %m()z) < 1, there exists

some positive constant K such that sup,cy P‘V/‘(/‘,gr) < 2 for |z| > K. By V > 1, P,V(2) <

MY () for || > K. PyV(z) < 22V (2) + blex:z1<ky(®) where b= sup,crcriz<ky V(). O

PROOF OF PROPOSITION 6: Fix zg € X, 79 € Y. By the condition (iii) and the Borel-Cantelli
Lemma, Ve > 0, 3Ny(xg, 70, €) > 0 such that Vn > Ny,

P(IOKYO) (Fn = Fn+1 =-.- ) >1— 6/2. (33)

Qonstruct a new chain {Xn : n > 0} which satisfies that for n < N, X, = X,, and for n > Ny,
Xy ~ PF;ND (XnNy, ). So, for any n > Ny and any set A € B(X'), by the condition (ii),
0

Plagno)(Xn € A, TNy =g = --- =Tn1)

:/ Py, (20, dz1) - 'P’YNO—1 (@No-1, deo)P';LNT)NO (TN, A)
XNOH[’YNO:"':PYTLfl
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and

IP)(aﬁo,'yo)(j(n € A) = /XNO P’Yo (.730, dajl) T P’YNO—I ("L‘NO*17 deo)P';LN:)NO (xNov A)

So,
’IP’(xMO)(Xn € ATny =+ =T 1) = Py o) (Xn € A)| < /2.

Since the condition (i) holds, suppose that for some K >0, ¥ = {y1, -+ ,yx }. Denote p;(-) =

Po0)(Xng € - [ Ty = i) for i = 1,--- | K. Because of the condition (ii), for n > N,

IED(ﬂﬂt),’vo)(j(" € A)

K
= ZP(OEOWO)(XH € ATy, =)
=1
K
= Z/ Py, (zo,dx1) -+ P’YNO—1(CCN0*17 dliNo)PyZiNO (mNoa A)
i—1 ¥ XNon[yn, =i

K
= " Plage) (T = vi) i P 0 (A).
=1

By the condition (i), there exists Ni(zg, 70, €, No) > 0 such that for n > Ny,

P () — (- < €/2.
ie{f}}_gK}\\u () =7 ||y < €/

So, for any n > Ny + Ny, any A € B(X),
|P($0,VO)(X” €A) - W(A)‘
< ‘P($0770)(Xn c€A) - P(IO,VO)(X” = A)‘ +
[P o) (R € 4) = 7(4)
<(e/2+¢/2) +€/2 = 3¢/2.

Therefore, the adaptive MCMC {X,, : n > 0} is ergodic with the target distribution 7. O

4.3 Proof of Theorem 3
Before we show that Theorem 3, we state [11, Lemma 4.2].

Lemma 4. Let x and z be two distinct points in R?, and let € = n(x — 2). If (€, m(y)) # 0 for all
y on the line from x to z, then z does not belong to {y cRe: 7(y) = 77(1:)}

Consider the test function V(x) = en~*(x) for some ¢ > 0 and s € (0,1) such that V(z) > 1.
Note that it is not difficult to check that for s € (0,1), 7(V') < oo by utilizing Definition 2.
By some algebras,

PV (x)/V(z) = / (77(33)> 4y (2)pa(dz)+

A(z)—= 71-5(13 + Z)
_ m(x + 2) Trl—S(x + 2) . .
/R(:c)—:c <1 () * =8 (x) )qv( Jpa(dz),

18



where the acceptance region A(x) = {y € X|n(y) > w(x)}, and the potential rejection region R(x) :=
{y € X|n(y) < m(x)}. From [19, Proposition 3], we have P,V (z) < r(s)V(x) where r(s) :=
14 5(1 —s)"1H1/s,

Proposition 9 (Exponential tail). Suppose that the target density m is exponentially tailed. Under
Assumptions 1-4, Containment holds.

Proof: Consider s € [0,1/2). Under Assumption 4, let

inf 2| [e~slAl — gma(1=s)l] z dz) and
1—s (uw)eSd—lxy/CM(u,e)‘ | [ ¢y (2)pa(dz)

H(a,s) =1+ /08 h(a,t)dt

where €, 3,9, A, and Cs a(+,-) are defined in Assumption 4. So, H(fe/3,0) =1 and

Be(l —e™ 1) ) /
e — inf z| g4 (2)pg(dz) < 0.
3 I . CMW)! | ¢y (2)paldz)

OH (Be/3,0)

— < o1 _
s h(Be/3,0) <e " +1

Therefore, there exists sg € (0,1/2) such that H(8e/3,s0) < 1.

Denote C(x) :=  — Csa(n(x),€) and CT(z) := = + Csa(n(z),¢e). For |z > 2A and y €
C(z) UCT(2), [yl > |2 = A > A so [n(y) — n(z)] < ¢/3.

Since the target density m(-) is exponentially tailed and Assumption 2, for sufficiently large
|| > K; with some K; > 2A, (n(x),Vlegn(z)) < —f and (n(z),m(r)) < —e. Then there
exists some Ky > Kj such that for |z| > K, (n(y),m(y)) < —e for y € C(x) UCT(z). Thus,

|Viegn(y)| = % > 3. Moreover, y = x 4 a& for some 6 < a < A and ¢ € 891, So,

(€, m(y)) = (€ = n(z),m(y)) + (n(z) —n(y), m(y)) + (n(y), m(y)) < —¢/3. (34)

Hence, by Lemma 4, for |z| > Ko,
O(z) N {y eR?: 1(y) = 7r(:):)} =@ and 7 ()N {y eRY: n(y) = W(x)} =0
For y =z +a€ € C'(z),
() (o) = [ (€ Vnta+ 1)
= [ e n(Tn(o -+ 1)) [Vr(a+ ) ds
<-— ;/Oa|V7r(x+t£)|dt§O
so that C"(z) C R(z). Similarly, C(x) C A(x).

x)
Consider the test function V(z) = er %9 (z) for some ¢ > 0 such that V(x) > 1. By Assump-

tion 1, for any compact set C C RY, sup V(z) < oo.
zeC
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For any sequence {z, : n > 0} with |x,| — oo, there exists some N > 0 such that n > N,
|xn| > Ko. We have

P,YV(.%‘n)/V(.%n) :/ ImmsO(Z)qu(Z)/Ld(dZ)‘F

{61('7:”)_xn}u‘{C’T (J?n)—il,‘n}

/ CIIn,SO(z)q'y(z)Md(dz),
{Cl@n)=2n}*0{CT (@n)=an}

where

W;TOSE):E(:z:_L)a VS A(-’L'n) — T,
Il"mso (Z) = m(zn+z) | 770 (zp+2)
1 7(zn) + 71750 (xy,) 2 € R(wn) — ap.

For z = a¢ € C'T (x,) — x, and t € (0, |z|), by Eq. (34)
(&, Viogm(zy + 1)) = (§, m(zn + 1)) [Viog m(zn + )| < —€B/3.
So, by Assumption 4,

7T({L‘n + Z) _ elogﬂ(xn+2)*10gﬂ($n) —e O\Z|<£’Vlogﬂ.(xn+t£)>dt < e*ﬁ6|z|/3 < 6*,365/3 < 671
7(xy) - - -

Similarly, for z = —af € C(zy,) — xp,

W(.%'n) < e—ﬂe|z|/3 < e !
m(xn +2) -

s — ¢ < ;L tl 0 —¢. Since t = 21— t1 % — ¢ is an increasing function on [0, 1],

Iy, s (2)ay(2)pa(dz)
/{C(mn)zn}U{C’T(ajn xn} 0 K

1 —S, €z
S/ e B (2)padz) +
C(zn)—zn L — S0

1
/ <1 _ o—Belzl/3 16—(1—80)56ZI/3> 00 (2)pald2).
CT(zn)—xn — S0

On the other hand,

/ . Iy, s0(2)qy(2)pa(dz)
{Clan)=en} 0 {OT (wn)—an}

<r(50)Qy ({C(wn) = 20} 0 {CT () - mn}) .
Define K, () fC e U2l g (2) a(dz) fCT e e g, (2)pa(dz), and

Hiy o (6,1) = =702 4+ Ko (0) = Ki (6) + =205 + 7(t) (1 = 2K (0)).

So,
PV (xy)/V(2zn) < Hy, ~(Be/3, s0).
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Clearly, K, ~(t) <1/2. For 0 <t <1/2,

O0H, (0,t)
ot
Ky ~(0t) + Kz ~(0(1 — 1)) 0 / /
_ _ ;Y Y _ _
= (1)(1 — 2K, (0)) + = 5 (Ko, (00 — K., (00— 1))
1 0

<y — —0tlz| _ —0(1-1)|z]

S e e R C 1Y 2l (2)pal)

<h(6,t).
Since Hy (0, 0) =1, Hyy(0,t) < H(0,t) for 0 <t < 1/2. Thus, Hy, ~(Be/3,50) < H(Be/3,50) < 1
so lim sup sup V( (;E) < 1. By Corollary 1, Containment holds. O

|z| =00 YEY

PROOF OF THEOREM 3: For (ii), by Proposition 9, Containment holds. Then ergodicity is implied
by Containment and Diminishing Adaptation.
For (i), From Assumption 3, for any € € (0,7;) and any u € S9!,

1{Vol(C¢ /o ¢ (u, €))
[ Flanaan = SR
Cea,c(uy€)

where ¢ is defined in Eq. (12), ¢ is defined in Assumption 3, Cy (-, -) is defined in Eq. (13). The
right hand side of the above equation is positive and independent of v and w. Since target density
is lighter-than-exponentially tailed, 72 := —limsup,|_,o (n(z), Vlogm(z)) = +o00 such that there
is some sufficiently large 5 such that Eq. (14) holds. So, Assumption 4 is satisfied.

For (iii), adopting the proof of [8, Theorem 5], we will show that the simultaneous drift condition
Eq. (6) holds. Denote

R(g,7,y) = g(y) — g(x) — (Vg(x),y — ).

Consider the test function V(z) := 1+ f*(z) where f(z) := —logm(z) for 2 -1 < 5 <
min(2, 2 — 2) where m is defined in Definition 3.
So,

4
PV (x) = V(z) = Pyf*(x) - f*(z) = Y _ Li(x,7),
7=0
where M is defined in Assumption 5 and

Io(w,7) === sf*"(x) IVf(fC)Iz/ (m(@),n(2))* |2 ¢, (2)pa(d2),

R(z)—zn{|z|<M}
L(e,) = / RO 2,2+ 2)gy (2)paldz),
{lz|<M}

/ R(f* 2z 4 2) D) oy ()
R(z)—an{|z|<M} ()

Iy(r,7) = / R(f* 22+ 2) (VF(2), 2) g (2)pa(d2)
R(z)—zn{|z|<M}

B R(m,z,x + z) S(2). B 3
)= [ SRR V@), 6 (i)
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By [8, Lemma B.4] and Assumption 5,

|11 (2, )] = O(|2[™72), |a(,7)
|I3(2, )] = O(|z|™ T 73), | Iy(z, )

Note that the O(-)s in the above equations are independent of . Since Z —1 < s < min(2, 2 —2),
Ly (z. ), Ia(@. )], |Is(, )] and | Lz, )| converge to zero as |a] — oo,

By Assumption 2, for € € (0,71) (11 is defined in Eq. (11)), (n(z), m(z)) < —e as |z| is suffi-
ciently large. By Assumption 3, for sufficiently large |z|, for any z € Cy¢(n(z),€) (¢ is defined in
Assumption 3, ¢ is defined in Eq. (12), and C..(-,-) is defined in Eq. (13)),

—1 < (m(x),n(2)) = (m(x), n(x)) + (m(x),n(z) — n(zx)) < —e+¢€/3.
Thus, )
de’isf* 1 (2) |V f(2)] 2
Ip(z,vy) < — z dz
() : Lo 10002

=—af @) V@) < cof @),

for some ¢; > 0 (independent of x) where Cq ¢(n(z),€) = Co¢(u,€) for any u € S4-1.
So, there exist some K > 0 and some c3 > 0 such that V(z) > 1.1 and P,V (z) — V(z) <
—c3V*(z) for |z| > K, some a € (0,1). Let V(z) := V(z)I(|z| > K) + I(|z| < K). So,

PV (z) = V(z) < —c3Vx) + e3l(|z] < K).

By Proposition 5, Containment holds. ]

5 Conclusions and Discussion

For adaptive Metropolis algorithms (see similar results for adaptive Metropolis-within-Gibbs al-
gorithms in [6]), we provide some conditions only related to properties of the target density and the
proposal family. For targets with lighter-than-exponential tails, ergodicity of adaptive Metropolis
algorithms can be implied by the uniform local positivity of the family of proposal densities. For
targets with exponential tails, ergodicity of adaptive Metropolis algorithms can be implied by both
the uniform local positivity and the uniform lower bound of the first moment of the family of pro-
posals.

Recently, there also is some results about this topic, see [24]. They show that if the target density
(n(z),Vlogm(x)) _

is regular, strongly decreasing, and strongly lighter-than-exponentially tailed (lim sup P

|z|—o00
—oo for some p > 1) which is used to keep the convexity of outside manifold contour of target densi-
ties, then strong law of large number (SLLN) for symmetric random-walk based adaptive Metropolis
algorithms holds. Compared with the results, although the conditions do not require that the target
density is strongly lighter-than-exponentially tailed, one restriction on proposal density is needed.
[11] show that if under Assumption 2 target density is lighter-than-exponential tailed then
random-walk-based Metropolis algorithms are geometrically ergodic. The technique in Proposition 9
can be also applied to MCMC. So, even if target density is exponentially tailed under some moment
condition similar as Eq. (14), any random-walk-based Metropolis algorithm is still geometrically
ergodic. Careful readers may mention that our symmetry assumption (¢(z,y) = ¢(z—vy) = q(y—x))
is a little different from the assumption (¢(x,y) = q(|]z —y|)) of [11].
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