
STA257 (Probability and Statistics I) Lecture Notes, Fall 2025

by Jeffrey S. Rosenthal, University of Toronto, www.probability.ca

(Last updated: September 8, 2025)

Note: I will update these notes regularly, posting them on the course web page each
evening after lectures (though without annotations). However, they are just rough,
point-form notes, with no guarantee of completeness or accuracy. They should in
no way be regarded as a substitute for attending and learning from all the lectures,
studying the course textbook, and doing the suggested homework exercises.

Introduction

• Course Information: See the course web page at: probability.ca/sta257

• Register for PollEverywhere: probability.ca/sta257/pollinfo.html

→ USE YOUR REGULAR UofT EMAIL!

• Who here is doing a specialist or major program involving: Statistics / Data Sci-

ence? Mathematics? Actuarial Science? Computer Science? Economics/Commerce?

Physics/Chemistry/Biology? Education? Psychology/Sociology? Engineering? Other?

• Who here has seen probabilities in elementary school? high school? STA130?

→ Don’t worry, we will start from scratch. (Just need math and logic.)

• Life is full of randomness and uncertainty: lotteries, card games, computer games,

gambling, weather, TTC, airplanes, friends, jobs, classes, science, finance, elections,

diseases, safety/risk, demographics, internet routing, legal cases, . . . whenever we’re

not sure of the outcome or what will happen next.

• Lots of interesting probability questions to solve! Such as . . .

→ What’s the probability you’ll win the Lotto Max jackpot, i.e. that you will

choose the correct 7 distinct numbers between 1 and 50?

→ If 200 students each flip a fair coin, then how many Heads is the most likely?

How likely? What’s the probability of more than 150 Heads?

→ If you repeatedly roll a fair 6-sided die [show], then how many rolls will there

be on average before the first time you roll a 3?

→ At a party of 40 people, what is the probability that some pair of them have

the same birthday?

→ If a disease affects one person in a thousand, and a test for the disease has 99%

accuracy, and you test positive, then what is the probability you have the disease?

→ If you pick a number uniformly at random between 0 and 1, then what is the

probability that you pick exactly the number 3/4?

→ Three-Card Challenge. [demonstration] What are the probabilities of the initial

(front) colour? Then, what are the probabilities of the back colour?

• History of Mathematical Probability Theory (in brief):
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→ Mathematics is very precise and certain. For thousands of years, it simply

ignored the uncertainty of probabilities.

→ Then, in 1654, the French writer Antoine Gombaud (the “Chevalier de Méré”)

asked the mathematician Pierre de Fermat some gambling questions:

→ Which is more likely (or are they the same) (and are they more than 50%):

(a) Get at least one six when rolling a fair six-sided die 4 times; or

(b) Get at least one pair of sixes when rolling two fair six-sided dice 24 times?

→ He thought (a) was 4× (1/6) = 2/3, and (b) was 24× (1/36) = 2/3. Correct?

→ Also: (c) Suppose a gambler is playing a best-of-seven match, where whoever

wins 4 (fair) games first in the winner, and so far they have won 3 times and lost 1,

but then the match gets interrupted. What is the probability that they would have

won the match, if it had been allowed to continue?

→ Fermat then corresponded with the mathematician Blaise Pascal to find solu-

tions to these questions (later!), and mathematical probability theory was born!

POLL: If you have independent probability 1/2 of winning each game, and you are

up 3 games to 1, what do you think is the probability that you will win 4 games first?

(A) 1/2. (B) 2/3. (C) 3/4. (D) 7/8. (E) No idea. [Best guess only – later.]

• So, can probabilities be studied mathematically?

→ Can we use certain mathematics to study the uncertainty of probabilities?

→ Yes! That’s why we’re here! To be certain about our uncertainty!

→ But we have to define our terms carefully . . .

Sample Space (§1.2) (i.e. Section 1.2 of the textbook)

• The first part of any probability model is the sample space, written S, which is

the set of all possible outcomes.

→ e.g. flip a coin: S = {Heads, Tails}, or S = {H,T}.
→ e.g. flip a coin three times in a row:

S = {HHH,HHT,HTH,HTT , THH, THT, TTH, TTT}.
→ Or, if we only care about the number of Heads: S = {0, 1, 2, 3}.
→ e.g. tonight’s dinner: S = {Beef, Chicken, Fish}. (Assume one.)

→ e.g. the number of bees I will see on my walk home: S = {0, 1, 2, 3, . . .}.
→ e.g. the price of IBM stock next month: S = [0,∞).

→ e.g. the height (in cm) of the next student I meet: S = (0,∞).

→ e.g. your grade in this class: S = {0, 1, 2, 3, . . . , 100}.
→ e.g. roll one six-sided die: S = {1, 2, 3, 4, 5, 6}.
→ e.g. roll two six-sided dice: S = {1, 2, 3, 4, 5, 6}2, i.e.

S = {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26,

31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46,

51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}.
→Or, if we only care about the sum, instead maybe take S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

p.2



→ e.g. “Pick any integer between 1 and 10”: S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
→ e.g. “Pick any number between 0 and 1”: S = [0, 1]. (important case!)

• Summary: The sample space S can be any non-empty set which contains all of

the possible outcomes. Simple!

• But it gets more interesting when we also have . . .

Probabilities and Events (§1.2)

• An event A is “any” subset A ⊆ S.

• For any event A, we can define the probability P(A) that it will occur.

→ e.g. flip a “fair” coin: P(H) = P(T ) = 1/2.

→ (Note: We often use e.g. “P(H)” as shorthand for “P({H})”, etc.)
→ e.g. roll a fair six-sided die: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.

→ e.g. tonight’s dinner: maybe P(Beef)=0.40, P(Chicken)=0.15, and P(Fish)=0.45.

→ (Note: We could also write P(Fish) = 45%, etc. Usually percentages are good

for intuition, but pure probabilities (not percentages) are better for calculation.)

→ e.g. flip three fair coins: P(HHH) = P(HHT ) = . . . = P(TTT ) = 1/8.

→ e.g. roll two fair dice: P(11) = P(12) = . . . = P(65) = P(66) = 1/36.

→ e.g. Pick any integer between 1 and 10. [Try it!]

Could be “uniform”, i.e. P(1) = P(2) = . . . = P(10) = 1/10. Or instead, maybe . . .

P(3)=P(6)=P(7)=0.2, and P(5)=0.1, and P(1)=P(2)=P(4)=P(8)=P(9)=P(10)=0.05.

→ e.g. Pick any number between 0 and 1, “uniformly” (“Uniform[0,1]”):

P([0, 1/2]) = 1/2, P([1/2, 1]) = 1/2, P([0, 1/3]) = 1/3, P([1/3, 2/3]) = 1/3,

and in general P([a, b]) = b− a whenever 0 ≤ a ≤ b ≤ 1. Diagram:

• Or maybe instead P([a, b]) = b2 − a2 whenever 0 ≤ a ≤ b ≤ 1. Valid?

• Or maybe instead P([a, b]) = (b− a)2 whenever 0 ≤ a ≤ b ≤ 1. Valid?

Basic Properties of Probabilities (§1.2)

• Let’s begin with a specific example (and then we will generalise):

• e.g. tonight’s dinner, with P(Beef)=0.40, P(Chicken)=0.15, and P(Fish)=0.45.

→ Probability of Beef or Chicken = P({Beef, Chicken}) = P({Beef}) + P({Chicken})
= 0.40 + 0.15 = 0.55.

→ Probability of any dinner = Probability of Beef or Chicken or Fish = P({Beef,
Chicken, Fish}) = P({Beef}) + P({Chicken}) + P({Fish}) = 0.40+ 0.15+ 0.45 = 1.

→ Probability dinner is not Beef nor Chicken nor Fish = P(∅) = 0.

• In general, certain properties must hold for any probability model (“axioms”):
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• If A is an event, then 0 ≤ P(A) ≤ 1.

• If A = S is the event corresponding to all outcomes, then P(A) = P(S) = 1.

• Or, if A = ∅ is the event corresponding to no outcomes, then P(A) = P(∅) = 0.

• Additivity: If A and B are disjoint events (i.e. A ∩B = ∅), e.g. A = {Beef} and

B = {Chicken}, then P(A ∪B) = P(A) + P(B).

• More generally, if A1, A2, A3, . . . are any sequence (finite or infinite) of disjoint

events (i.e. Ai ∩ Aj = ∅ whenever i ̸= j), then P
(⋃

i Ai

)
=

∑
i P(Ai).

→ So, in particular, since P(S) = 1, all of the probabilities have to add up to 1.

→ e.g. P(Heads) + P(Tails) = 0.5 + 0.5 = 1.

→ e.g. P(Beef) + P(Chicken) + P(Fish) = 0.40 + 0.15 + 0.45 = 1.

Suggested Homework: 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.8, 1.2.9, 1.2.10, 1.2.11, 1.2.12,

1.2.13, 1.2.14, 1.2.15.

————————— END WEDNESDAY #1 —————————

Derived Properties of Probabilities (§1.3)

• Once we know the above properties, then we can use them to prove others too:

• Fact: If AC is the complement of A, i.e. the set of all outcomes which are not in

A, then P(AC) = 1− P(A). (Important! Remember this! Use this!)

→ Proof: Note that A and AC are disjoint, so P(A ∪ AC) = P(A) + P(AC). But

P(A ∪ AC) = P(S) = 1, so 1 = P(A) + P(AC), i.e. P(AC) = 1− P(A).

→ e.g. P(Fish) = P(not Beef or Chicken) = 1− P(Beef or Chicken) = 1− 0.55 =

0.45.

• Fact: For any events A and B, P(A) = P(A ∩B) + P(A ∩BC). (∗)
Diagram:

→ Proof: The events A∩B and A∩BC are disjoint, and (A∩B)∪ (A∩BC) = A,

so by additivity, P(A ∩B) + P(A ∩BC) = P(A).

→ e.g. integer between 1 and 10: P(even) = P(even and ≤ 4) + P(even and ≥ 5)

= P({2, 4}) + P({6, 8, 10}).

• Re-arranging (∗) also gives that: P(A ∩BC) = P(A)− P(A ∩B). (∗∗)

• Fact: If A ⊇ B, then P(A) = P(B) + P(A ∩BC). (∗∗∗)
→ Proof: This follows from (∗), since if A ⊇ B, then A ∩B = B.

→ e.g. integer between 1 and 10: P(≤ 7) = P(≤ 4) + P(≤ 7 but ≥ 5).

• Monotonicity: If A ⊇ B, then P(A) ≥ P(B). (Remember this!)
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→ Proof: We must have P(A ∩BC) ≥ 0, so from (∗∗∗),
P(A) = P(B) + P(A ∩BC) ≥ P(B) + 0 = P(B).

→ e.g. P({Beef, Chicken}) = 0.55 ≥ 0.40 = P({Beef}).

• Law of Total Probability – Unconditioned Version: Suppose A1, A2, . . . are a

sequence (finite or infinite) of events which form a partition of S, i.e. they are disjoint

(Ai∩Aj = ∅ for all i ̸= j) and their union equals the entire sample space (
⋃

i Ai = S),

and let B be any event. Diagram:

Then P(B) =
∑

i P(Ai ∩B). That is: P(B) = P(A1 ∩B) + P(A2 ∩B) + . . ..

→ Proof: Since the {Ai} are disjoint, and Ai ∩ B ⊆ Ai, therefore the {Ai ∩ B}
are also disjoint. Furthermore, since

⋃
iAi = S, therefore

⋃
i(Ai ∩ B) = S ∩ B = B.

Hence, P(B) = P
(⋃

i(Ai ∩B)
)
=

∑
i P(Ai ∩B).

→ e.g. integer between 1 and 10: Suppose A1 = {≤ 4} = {1, 2, 3, 4}, and A2 =

{≥ 5} = {5, 6, 7, 8, 9, 10}, and B = {even} = {2, 4, 6, 8, 10}. Then P(even) = P(even

and ≤ 4) + P(even and ≥ 5), i.e. P({2, 4, 6, 8, 10}) = P({2, 4}) + P({6, 8, 10}).

• Principle of Inclusion-Exclusion: P(A ∪B) = P(A) + P(B)− P(A ∩B).

→ (Of course, if they’re disjoint (A ∩B = ∅), then P(A ∪B) = P(A) + P(B).)

→ Intuition: P(A) + P(B) counts each element of A ∩ B twice, so we have to

subtract one of them off.

→ Proof: The events A ∩B, and A ∩BC , and AC ∩B, are all disjoint, and their

union is A ∪B. Diagram:

Hence, P(A ∪B) = P(A ∩B) + P(A ∩BC) + P(AC ∩B).

But from (∗∗), P(A∩BC) = P(A)−P(A∩B) and P(AC∩B) = P(B)−P(A∩B).

Hence, P(A ∪B) = P(A ∩B) +
[
P(A)− P(A ∩B)

]
+
[
P(B)− P(A ∩B)

]
= P(A) + P(B)− P(A ∩B).

→ e.g. integer between 1 and 10: P(even or ≤ 4) = P(even) + P(≤ 4) − P(even

and ≤ 4) = P({2, 4, 6, 8, 10}) + P({1, 2, 3, 4})− P({2, 4}).
→ Or, P(even or perfect square) = P(even) + P(perfect square) − P(even and

perfect square) = P({2, 4, 6, 8, 10}) + P({1, 4, 9})− P({4}).

• Optional: A more general Inclusion-Exclusion formula is in Challenge 1.3.10.

• Now, P(A∩B) ≥ 0, so P(A∪B) = P(A)+P(B)−P(A∩B) ≤ P(A)+P(B). (!)

• Subadditivity: For any sequence of events A1, A2, . . ., not necessarily disjoint, we

still always have P(A1 ∪ A2 ∪ . . .) ≤ P(A1) + P(A2) + . . ..

→ (Of course, it would be equal if they are disjoint.)
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→ Proof (§1.7): Let B1 = A1, and B2 = A2 ∩ (A1)
C , and B3 = A3 ∩ (A1 ∪ A2)

C ,

and B4 = A4 ∩ (A1 ∪ A2 ∪ A3)
C , and so on. (That is, each new Bn is the part of An

which is not already part of A1, . . . , An−1.) Diagram:

Then the {Bi} are disjoint by construction, and
⋃

i Bi =
⋃

i Ai.

[Formally, the above construction ensures that
⋃n

i=1 Bi =
⋃n

i=1Ai for each finite n.

Then, in the infinite case,
⋃∞

i=1 Bi =
⋃∞

n=1 (
⋃n

i=1 Bi) =
⋃∞

n=1 (
⋃n

i=1Ai) =
⋃∞

i=1 Ai.]

Also Bi ⊆ Ai so P(Bi) ≤ P(Ai). Hence, P(A1 ∪ A2 ∪ . . .) = P(B1 ∪ B2 ∪ . . .) =

P(B1) + P(B2) + . . . ≤ P(A1) + P(A2) + . . ..

→ Alternative proof (for a finite number of events): Use induction! For n = 2

events, this follows from Inclusion-Exclusion. Then for n ≥ 3 events, P(A1∪. . .∪An) =

P
(
(A1∪. . .∪An−1)∪An

)
, which by Inclusion-Exclusion is≤ P

(
A1∪. . .∪An−1

)
+P(An),

which by induction is ≤
(
P(A1) + . . .+ P(An−1)

)
+ P(An).

→ e.g. integer between 1 and 10: P(even or ≤ 4) ≤ P(even) + P(≤ 4), i.e.

P({1, 2, 3, 4, 6, 8, 10}) ≤ P({2, 4, 6, 8, 10}) + P({1, 2, 3, 4}).

[Note that we do not have “uncountable” subadditivity, e.g. for uniform on S = [0, 1],

if Ax = {x} for each x ∈ S, then P(
⋃

x∈S Ax) = P(S) = P([0, 1]) = 1, even though

P(Ax) = P({x}) = 0 for each individual x ∈ S, so also
∑

x∈S P(Ax) =
∑

x∈S(0) = 0.]

Suggested Homework: 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.3.7, 1.3.8, 1.3.9.

Uniform Probabilities on Finite Spaces (§1.4)

• Suppose S = {s1, s2, . . . , sn} is some finite sample space, of finite size |S| = n,

and each element is equally likely.

→ Then P(s1) = P(s2) = . . . = P(sn) = 1/n. (“discrete uniform distribution”)

→ And for any event A = {a1, a2, . . . , ak}, by additivity we have

P(A) = P(a1) + P(a2) + . . .+ P(ak) =
1

n
+

1

n
+ . . .+

1

n
=

k

n
=

|A|
|S|

.

→ So, in this case, we just need to count the number of elements in A, and divide

that by the number of elements in S. Easy!?! Sometimes!

• e.g. Roll a fair six-sided die. What is P(≥ 5)?

→ Here S = {1, 2, 3, 4, 5, 6} so |S| = 6. All equally likely.

→ Also A = {5, 6} so |A| = 2.

→ So, P(≥ 5) = P(A) = |A|
/
|S| = 2/6 = 1/3. Easy!

• Flip two fair coins. What is P(# Heads = 1)?
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POLL: (A) 1/4. (B) 1/3. (C) 1/2. (D) 3/4. (E) 1. (F) No idea.

→ Here S = {HH,HT, TH, TT}, all equally likely. So, |S| = 4.

→ And, A = {HT, TH}. So, |A| = 2.

→ Hence, P(A) = |A| / |S| = 2/4 = 1/2. Easy!

• e.g. Roll one fair six-sided die, and flip two fair coins.

What is P(# Heads = Number Showing On The Die)? (Best guess?)

POLL: (A) 1/6. (B) 1/8. (C) 1/12. (D) 1/16. (E) 1/24. (F) No idea.

→ Here S = {1HH, 1HT, 1TH, 1TT, 2HH, . . . , 6TT}. All equally likely.

→ But what is |S|?
→ Multiplication Principle: If S is made up by choosing one element of each of

the subsets S1, S2, . . . , Sk, i.e. if S = S1 × S2 × . . .× Sk, then what is |S|? Well, . . .

|S| = |S1| |S2| . . . |Sk|.
→ In our example, S1 = {1, 2, 3, 4, 5, 6}, and S2 = {H,T}, and S3 = {H,T}, so

|S| = |S1| |S2| |S3| = 6 · 2 · 2 = 24.

→ And what about A? Well, think about the possibilities . . .

A = {1HT, 1TH, 2HH}. (No other combination works. Why?) So, |A| = 3.

→ Hence, P(# Heads = Number Showing On The Die) = |A|
/
|S| = 3/24 = 1/8.

→ [Alternatively (later): (1/6)(1/2)+(1/6)(1/4) = (1/12)+(1/24) = 3/24 = 1/8.]

• e.g. Roll three fair six-sided dice. What is P(sum ≥ 17)?

→ Here S = {1, 2, 3, 4, 5, 6}3 so |S| = 63 = 216. All equally likely.

→ But what is A? Think about it . . .

Here A = {666, 566, 656, 665} (why?), so |A| = 4.

→ So, P(sum ≥ 17) = P(A) = |A|
/
|S| = 4/216 = 1/54.

→ Exercise: What about P(sum ≥ 16)? P(sum ≥ 15)?

• Chevalier de Méré’s historical 1654 questions:

• (a) What is P(get at least one six when rolling a fair six-sided die 4 times)?

→ Here S = {1, 2, 3, 4, 5, 6}4, so |S| = 64 = 1296. All equally likely.

→ And what is |A|? Tricky. Easier to consider . . .

→ AC = {no sixes in four rolls} = {1, 2, 3, 4, 5}4, so |AC | = 54 = 625.

→ So, P(AC) = |AC |
/
|S| = 54 / 64 = 625 / 1296

.
= 0.482.

→ So, P(A) = 1− P(AC)
.
= 1− 0.482 = 0.518. More than 50%.

→ (Alternatively: By “independence” [later], P(A) = 1− (5/6)4
.
= 0.518.)

• (b) What is P(get at least one pair of sixes when rolling a pair of fair six-sided

dice 24 times)?

→ Here S =
(
{1, 2, 3, 4, 5, 6}2

)24

, so |S| = (62)24 = 648 (>1037). All equally likely.

→ And what is |A|? Tricky. Again, easier to consider . . .

→ AC = {no pair of sixes in 24 rolls} = {11, 12, 13, . . . , 64, 65}24, so |AC | = 3524.
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→ So, P(AC) = |AC |
/
|S| = 3524/648

.
= 0.509.

→ So, P(A) = 1− P(AC)
.
= 1− 0.509 = 0.491. Less than 50%.

→ (Again, alternatively by independence [later], P(A) = 1− (35/36)24
.
= 0.491.)

Suggested Homework: 1.4.1, 1.4.9, 1.4.10, 1.4.11, 1.4.12, 1.4.13.

—————————— END MONDAY #1 ——————————
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