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Theorem 3.5.3 raises the question of what distribution the limiting ran-
dom variable X could have.

If the martingale {Xn} is also a Markov chain, then we can say more.
Call x ∈ R an isolated value if x is bounded away from all (other) states, i.e.
if there is δ > 0 such that |j − x| ≥ δ for all j ∈ S with j 6= x.
(So, if S ⊆ Z, then every state is isolated with δ = 1, and every non-integer
x ∈ R is isolated with δ = min(x− bxc, dxe − x) > 0.)

(3.5.s1) Proposition. If {Xn} is a Markov chain on a state space S, which
converges w.p. 1 to some random variable X, and i ∈ S is an isolated value
with pii < 1, then P(X = i) = 0.

Proof: If a sequence converges to an isolated value, then it must eventually
be constant, i.e. equal to that value an infinite number of times in a row.
But if pii < 1, then the probability that {Xn} is equal to i infinitely many
times in a row is given by (pii)

∞ = 0, so P(X = i) = 0.

Combining Proposition 3.5.s1 with Theorem 3.5.3 then gives:

(3.5.s2) Corollary. If {Xn} is a Markov chain on a state space S, which is
also a martingale, and is bounded below or above, then {Xn} converges w.p. 1
to a random variable X having the property that whenever P(X = x) > 0,
then either x ∈ S with pxx = 1, or x is not an isolated value.

(3.5.s3) Example. Let {Xn} be a Markov chain with state space S =
{5, 6, 7, 8, . . .}, p5,5 = 1, pi,i−1 = pi,i = pi,i+1 = 1/3 for i ≥ 6, and X0 = 8.
Then {Xn} is a martingale by (3.1.3), and is bounded below by 5.
Also every value is isolated, and only state i = 5 has pii = 1.
Hence, by (3.5.s2), {Xn} converges w.p. 1 to a random variable X, such that
P(X = x) = 0 for all x 6= 5. Hence, P(X = 5) = 1.
So, {Xn} converges w.p. 1 to the constant 5, i.e. Xn → 5.

Corollary 3.5.s2 can then be used in the solutions to Problems 3.5.4(b),
3.5.5(b), and 3.5.6(f).


