Supplement for the end of Section 3.5 (page 92) of "A First Look at Stochastic Processes" (2019)

by Jeffrey S. Rosenthal

Theorem 3.5.3 raises the question of what distribution the limiting random variable X could have.

If the martingale $\{X_n\}$ is also a *Markov chain*, then we can say more. Call $x \in \mathbf{R}$ an *isolated value* if x is bounded away from all (other) states, i.e. if there is $\delta > 0$ such that $|j - x| \ge \delta$ for all $j \in S$ with $j \ne x$.

(So, if $S \subseteq \mathbf{Z}$, then every state is isolated with $\delta = 1$, and every non-integer $x \in \mathbf{R}$ is isolated with $\delta = \min(x - \lfloor x \rfloor, \lceil x \rceil - x) > 0$.)

(3.5.s1) Proposition. If $\{X_n\}$ is a Markov chain on a state space S, which converges w.p. 1 to some random variable X, and $i \in S$ is an isolated value with $p_{ii} < 1$, then $\mathbf{P}(X = i) = 0$.

Proof: If a sequence converges to an isolated value, then it must eventually be <u>constant</u>, i.e. equal to that value an infinite number of times in a row. But if $p_{ii} < 1$, then the probability that $\{X_n\}$ is equal to *i* infinitely many times in a row is given by $(p_{ii})^{\infty} = 0$, so $\mathbf{P}(X = i) = 0$.

Combining Proposition 3.5.s1 with Theorem 3.5.3 then gives:

(3.5.s2) Corollary. If $\{X_n\}$ is a Markov chain on a state space S, which is also a martingale, and is bounded below or above, then $\{X_n\}$ converges w.p. 1 to a random variable X having the property that whenever $\mathbf{P}(X = x) > 0$, then either $x \in S$ with $p_{xx} = 1$, or x is <u>not</u> an isolated value.

(3.5.s3) Example. Let $\{X_n\}$ be a Markov chain with state space $S = \{5, 6, 7, 8, \ldots\}, p_{5,5} = 1, p_{i,i-1} = p_{i,i} = p_{i,i+1} = 1/3$ for $i \ge 6$, and $X_0 = 8$. Then $\{X_n\}$ is a martingale by (3.1.3), and is bounded below by 5. Also <u>every</u> value is isolated, and <u>only</u> state i = 5 has $p_{ii} = 1$. Hence, by (3.5.s2), $\{X_n\}$ converges w.p. 1 to a random variable X, such that $\mathbf{P}(X = x) = 0$ for all $x \ne 5$. Hence, $\mathbf{P}(X = 5) = 1$. So, $\{X_n\}$ converges w.p. 1 to the constant 5, i.e. $X_n \rightarrow 5$.

Corollary 3.5.s2 can then be used in the solutions to Problems 3.5.4(b), 3.5.5(b), and 3.5.6(f).